
AI2615 算法设计与分析 2020-2021春季学期

Lecture 16 – Fine-Grained Complexity
2021年 6月 11日

Lecturer: 张驰豪 Scribe: 陶表帅

In the previous two lectures, we have seen problems that are solvable in polynomial time (P) and those
problems that are unlikely to be solved in polynomial time (NP-complete). In this lecture, we deal with
problems in P, and we will see results like “a problem admits an O(n2) algorithm, but unlikely to be solved
in O(n2−ε) time (for any ε> 0).” This area is called fine-grained complexity.
When we are considering if a problem can be solved in a polynomial time (e.g., P versus NP), different
computationmodels normally do not make a difference, andwe can assumewe are using a Turingmachine.
However, when we are dealing with fine-grained complexity, we need to specify a particular computation
model, and we will use the word-RAM model in this lecture.
To show that a problem can be solved in O(n2) time but not in O(n2−ε) time, we first need to assume a
complexity hypothesis. In previous two lectures, we have used the hypothesis P 6= NP to show certain
problems are hard. Can we use the hypothesis P 6=NP to show a result in fine-grained complexity? This
turns out to be quite challenging.
To use the hypothesis P 6= NP, we want to reduce a problem A from a NP-complete problem, say, SAT.
To show that A can be solved in O(n2) time but not in O(n2−ε) time, we need to prove A can be solved
in O(n2−ε) time if and only if SAT is in P. Let R be the reduction, and T be an algorithm for problem A.
This would imply T (R(x)) is computable in a polynomial time if T can be computed in O(n2−ε) time, and
T (R(x)) is not computable in a polynomial time if T can only be computed in O(n2) time. We need to
somehow amplify the gap between n2−ε and n2 to a gap between a polynomial function and an exponen-
tial function. This is unlikely. Therefore, those results in find-grained complexity are usually based on
hypotheses stronger than P 6=NP.

1 (Strong) Exponential-Time Hypothesis

1.1 Exponential-Time hypothesis

Hypothesis 1 (Exponential-Time Hypothesis (ETH)). There is no 2o(n) time algorithm for 3-SAT, where n

is the number of variables.

An equivalent way to state ETH is, there exists δ > 0 such that 3-SAT has no O(2δn) time algorithm. Ob-
viously, ETH is a stronger hypothesis than P 6= NP (i.e., ETH implies P 6= NP). ETH basically says that

1

3-SAT has no sub-exponential time algorithm, while P 6=NP only says that 3-SAT has no polynomial time
algorithm. As a remark, the current best algorithm for 3-SAT runs in 1.3071n time.
Let us first exam what ETH will imply for the complexity of other NP-complete problems. Ideally, we
would like that ETH implies that many other NP-complete problems do not admit sub-exponential time
algorithms as well. If this is the case, when we are doing fine-grained complexity, we can reduce a problem
from many other NP-complete problems, not just 3-SAT.
Let us first look at the independent set problem. Recall that, for a 3-cnf formula with n variables and m

clauses, we have constructed an independent set instance G = (V ,E) with |V | = 3m vertices (remember that
we have constructed a triangle for each clause). Since we only have |V | = 3m ≤ 3 · (n

3

)= O(n3), ETH only
implies the independent set problem do not admit a 2o(3pn) time algorithm, where n = |V | is the number of
vertices. Ideally, wewould like to show that the independent set problem do not admit any sub-exponential
time algorithm. That is, we would like to show that the independent set problem cannot be solved in 2o(n)

time. To show this, the following sparsification lemma due to Impagliazzo et al. [2001] is powerful.

Theorem 2 (Sparsification Lemma). If there is a 2δn time algorithm for 3-SAT for any δ > 0, then, for any

δ′ > 0, there is a 2δ′n time algorithm for the 3-SAT problem with the restriction m = O(n) (where n is the

number of variables and m is the number of clauses).

Now we can show that the independent set problem do not have a sub-exponential time algorithm.

Theorem 3. Assuming ETH, the independent set problem cannot be solved in 2o(n) time, where n is the number

of vertices.

Proof. Consider the 3-SAT problem with the restriction m =O(n). By ETH and the sparsification lemma,
there is no 2o(n) time algorithm that can solve this restricted version of the 3-SAT problem. Consider the re-
duction we have seen in Lecture 13 where, for a 3-SAT instance ϕwith n variables and m clauses such that
m = O(n), we have constructed an independent set instance G = (V ,E) with |V | = 3m = O(n). If we have
an algorithm for the independent set problem that runs in 2o(n) time, we can use this reduction to obtain
an algorithm for the (restricted) 3-SAT problem that runs in 2o(n) time, which leads to a contradiction.

1.2 Strong Exponential-Time Hypothesis

Hypothesis 4 (Strong Exponential-Time Hypothesis (SETH)). SAT cannot be solved in O((2−ε)n) time for
any ε> 0.

SETH is even stronger than ETH. In fact, many researchers do not believe it is true. SETH implies many
impossibility results in fine-grained complexity. If any of these impossibility results fails, then SETH is
refuted. However, we have not seen the failure of one such impossibility result yet. In the next two
sections, we will see two fine-grained complexity results based on SETH.

2

2 Fine-Grained Complexity for Orthogonal Vectors

Problem 5 (Orthogonal Vectors). Let A,B ⊆ {0,1}d be two sets of d-dimensional binary vectors with |A| =
|B | = n Decide if there exists a ∈ A and b ∈ B such that a>b = 0.

Clearly, the orthogonal vectors problem can be solved in O(n2d) time by enumerating all pairs of vectors
(a,b) ∈ A×B . The following hypothesis says that this is essentially the best we can do if we are considering
the exponent 2 of n in the time complexity. This hypothesis holds if SETH holds.

Hypothesis 6 (Orthogonal Vectors Hypothesis (OVH)). The orthogonal vectors problem cannot be solved
in O(n2−εd c) time for any ε> 0 and any c .

Theorem 7. SETH implies OVH.

The general framework for showing a result like this is still a reduction. Consider a reduction R that maps
an instance a of problem A to an instance b of problem B , and let r (a) be the running time for computing
b =R(a). Suppose we have an algorithm that solves an instance b of problem B in TB (b) time. Then, we
can solve the instance a of problem A in r (a)+TB (b) time.

Proof of Theorem 7. Given a SAT instance ϕ with n variables and m clauses, we construct a orthogonal
vectors instance as follows. We assume n is an even numberwithout loss of generality. LetVA = {x1, . . . , x n

2
}

be the set of the first n
2 variables in the SAT instance, and VB = {x n

2 +1, . . . , xn} be the set of the remaining
n
2 variables. Given a Boolean assignment σ ∈ {0,1}VA to the variables in VA , let xσ be the m-dimensional
binary vector whose i -th entry is defined as follows:

xσ[i] =
 0 if σ satisfies the i -th clause

1 if σ fails to satisfy the i -th clause
.

Notice that σ is only a partial assignment to the first n
2 variables. By saying σ satisfies the i -th clause, we

mean that at least one literal in the clause evaluates to true based on the partial assignment σ. By saying
σ fails to satisfy the i -th clause, we mean that, for each literal in the clause, either the literal evaluates to
false or the literal’s value is not defined by σ. Given a Boolean assignment τ ∈ {0,1}VB to the variables in
VB , let yτ be defined similarly. Finally, the orthogonal vectors instance is given by A = {xσ | σ ∈ {0,1}VA }

and B = {yτ | τ ∈ {0,1}VB }.
For the size of the orthogonal vectors instance, we have N := |A| = |B | = 2

n
2 , and d = m. The reduction

takes O(2
n
2 m) time.

It is easy to see the validity of the reduction: the SAT instance ϕ is a yes instance if and only if the
orthogonal vectors instance is a yes instance. In particular, it is straightforward to check that x>σyτ = 0 if
and only if the Boolean assignment (xσ,yτ) is a satisfying assignment for ϕ.

3

SupposeOVH is false. We have an algorithm that solves the above orthogonal vectors instance inO(N 2−εd c)

for some ε> 0 and some c . Substituting N = 2
n
2 and m = d into it, the SAT instance can be solved in time

O
(
2

n
2 m

)
+O

((
2

n
2

)2−ε
mc

)
=O

(
2(1− ε

2)nmc
)
=O

(
(2−ε′)n)

,

for some ε′ > 0. This would invalidate SETH. The contra-positive of this implies the theorem.

As an important remark, tomake the reductionwork, we need tomake sure the running time for computing
the reduction, r (a), should not be asymptotically larger than TB (b). Our objective is to show that being
able to solve problem B in TB (b) time implies being able to solve problem A in some TA(a) time. The
reduction implies TA(a) = r (a)+TB (b). If r (a) =ω(TB (b)), we can conclude nothing.

3 Fine-Grained Complexity for Longest Common Subsequence

Problem 8 (Longest Common Subsequence). Given two strings x and y , decide the maximum length of
their common sub-string.

For example, if we have two strings “DIFFICULTIES” and “INDUSTRIES”, the longest common subsequence
is “IUTIES” or “DUTIES”, which have length 6.
A simple dynamic programming algorithm can solve this problem. Let F (i , j) be the length of the longest
common subsequence for the string x[0,1, . . . , i] and the string y[0,1, . . . , j]. We have the following recur-
rence relation:

F (i , j) = max{F (i −1, j −1)+1(x[i] = y[j]),F (i , j −1),F (i −1, j)}.

It is easy to check that the algorithm runs in O(n2) time (where n is the sum of the lengths of the two
strings). In this section, we will show that this is the best we can do, assuming SETH. Since we have
seen in the previous section that SETH implies OVH, the following theorem implies longest common
subsequence cannot be solved in O(n2−ε) time, assuming SETH.

Theorem 9. Assuming OVH, longest common subsequence cannot be solved in O(n2−ε) time for any ε> 0.

Given an orthogonal vectors instance (A,B) with |A| = |B | = n such that the dimension of the vectors is
d , we construct a longest common subsequence instance (x, y,k) with |x|, |y | = O(nd 2). Here, we have
formulated the longest common subsequence problem as a decision problem: decide if x and y have a
common subsequence with length at least k . The reduction must map yes instances to yes instances and
no instances to no instances. That is, if there exists a ∈ A and b ∈ B such that a>b = 0, then x and y must
have a common subsequence with length at least k . Otherwise, the longest common subsequence of x and
y must be strictly less than k . We will use L(x, y) to denote the length of the longest common subsequence
of x and y .

4

Let us consider the simplest case with n = 1 and d = 1. In this case, there is only one vector in each of A

and B , and the vector in A or B is just a binary number which is either 0 or 1. For the binary number in A,
we need to construct a string representing it. Let C A(0) and C A(1) be the two strings representing 0 and 1

in A. Let CB (0) and CB (1) be the two strings representing 0 and 1 in B . By setting

C A(0) = 001, C A(1) = 111, CB (0) = 011, and CB (1) = 000, (1)

we can check that the longest common subsequence for C A(a) and CB (b) is 2 if C A(a) ·CB (b) = 0 (i.e.,
the two vectors are orthogonal), and it is 0 if C A(a) ·CB (b) = 1 (i.e., the two vectors are not orthog-
onal). Therefore, for the instance (A = {a},B = {b}), the longest common subsequence constructed is
(x =C A(a), y =CB (b),k = 2).
In the next step, we consider the more complicated case with n = 1 and general d . That is, we still assume
each of A and B contains only one vector, but the dimension of the vector is not restricted. We need to
check if a ∈ A and b ∈ B is orthogonal. Our reduction needs to map a and b to two strings VA(a) and VB (b)

such that the longest common subsequence L(VA(a),VB (b)) is at least some number k if a>b = 0, and the
longest common subsequence L(VA(a),VB (b)) is strictly less than k if otherwise.

Vector gadget. Below, we introduce a new character ‘2’. 23d denotes the string containing 3d consecutive
‘2’s. C A ,CB are those defined in (1). ai and bi denote the i -th bit of a and b respectively. The vector gadget
is defined as follows:

VA(a) =C A(a1)23dC A(a2)23d · · ·23dC A(ad)

VB (b) =CB (b1)23dCB (b2)23d · · ·23dCB (bd)
(2)

Lemma 10. VA ,VB : {0,1}d → {0,1,2}3d 2
can be computed in O(d 2) time. Moreover, the longest common

subsequence L(VA(a),VB (b)) is αd if a>b = 0, and it is at most αd −2 if otherwise, where αd = 3d 2 −d .

Proof. The first part of the lemma about the computation time is trivial.
We claim that

L (VA(a),VB (b)) = 3d(d −1)+
d∑

k=1
L (C A(ak),CB (bk)) .

To see this, we need to make sure those d − 1 segments of 23d from the two strings must be matched
exactly. Otherwise, we have lost at least 3d in the length of the common subsequence, and this cannot be
compensated from anywhere else. Given that those d −1 segments being matched exactly, each C A(ak)

is then matched with CB (bk). If a>b = 0, we know that L(C A(ak),CB (bk)) = 2 for each k = 1, . . . ,d , which
implies L(VA(a),VB (b)) = 3d(d − 1)+ 2 ·d = 3d 2 −d . Otherwise, we know that there exists k such that
L(C A(ak),CB (bk)) = 0, and we have L(VA(a),VB (b)) ≤ 3d 2 −d −2.

5

Normalized vector gadget. In Lemma 10, in the case where a>b 6= 0, we have that L(VA(a),VB (b)) is at
most αd − 2 = 3d 2 −d − 2. We aim to construct normalized vector gadgets NA and NB to make it exact.
Below, we have introduced a new character ‘3’, and αd is defined in Lemma 10.

NA(a) =VA(a)3αd−2

NB (b) = 3αd−2VB (b)
(3)

Lemma 11. NA , NB : {0,1}d → {0,1,2,3}6d 2−d−2 can be computed inO(d 2) time. Moreover, L(NA(a), NB (b)) =
αd if a>b = 0, and L(NA(a), NB (b)) =αd −2 if a>b 6= 0.

Proof. Thefirst part of the lemma about the computation time is trivial. If a>b = 0, we have L(VA(a),VB (b)) =
αd by Lemma 10, and matching VA(a) with VB (b) gives us the longest common subsequence, which has
length αd . If a>b 6= 0, we have L(VA(a),VB (b)) ≤αd −2 by Lemma 10, and matching the segment 3αd−2 in
both strings gives us the longest common subsequence, which has length αd −2.

So far, we have only considered the case where A and B contain only one vector. In the final step, we
consider the most general case where |A| = |B | = n. We need to construct a single string x that aggregates
all the vectors in A and a single string y that aggregates all the vectors in B such that L(x, y) = k if there
exist a ∈ A and b ∈ B with a>b = 0 and L(x, y) < k if otherwise. The challenge here is, we need to make
sure a particular segment in x that represents a vector in A is matched with a particular segment in y

that represents a vector in B . Let A = {a0,a1, . . . ,an−1} and B = {b0,b1, . . . ,bn−1}. The longest common
subsequence instance (x, y,k) is constructed as follows:

x = NA(a0)4γNA(a1)4γ · · ·4γNA(an−1)4γNA(a0)4γNA(a1)4γ · · ·4γNA(an−1)

y = 4nγNB (b0)4γNB (b1)4γ · · ·4γNB (bn−1)4nγ
(4)

and k = (2n −1)γ+n(αd −2)+2, where we have used a new character ‘4’ and we set γ= 6d 2 −d −2.
After some observations, it is not hard to see that, in the longest common subsequence, all the 2n − 1

segments of 4γ in x must be matched, and the segments NB (b0), NB (b1), . . . , NB (bn−1) in y must be matched
to the segments NA(a∆), NA(a∆+1), . . . , NA(an−1), NA(a0), NA(a1), . . . , NA(a∆−1) in x accordingly (for some
∆ ∈ {0,1, . . . ,n−1}). In the case there do not exist ai ∈ A and b j ∈ B with a>

i b j = 0, the length of the longest
common subsequence is exactly k −2. If there exist ai ∈ A and b j ∈ B with a>

i b j = 0, by letting ∆= (i − j)

mod n, the length of the longest common subsequence is at least k . This concludes the validity of the
reduction: yes instances of the orthogonal vectors problem are always mapped to yes instances of the
longest common subsequence problem, and no instances of the orthogonal vectors problem are always
mapped to no instances of the longest common subsequence problem.
The reduction takes time O(nd 2). Suppose we have an algorithm that solves the longest common subse-
quence problem in O((|x|+ |y |)2−ε) time. We can solve the orthogonal vector problem in time

O(nd 2)+O
((

3n · (6d 2 −d −2)+γ · (5n −2)
)2−ε)=O(n2−εd 4−2ε),

which violates OVH.

6

参考文献

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. 2

7

	Lecture 16 – Fine-Grained Complexity
	(Strong) Exponential-Time Hypothesis
	Exponential-Time hypothesis
	Strong Exponential-Time Hypothesis

	Fine-Grained Complexity for Orthogonal Vectors
	Fine-Grained Complexity for Longest Common Subsequence

