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Lecture 15 — More Proofs for NP-hardness Problems
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1 Reviewing Previous Lecture

Informally, P is the set of the problems that can be solved in a polynomial time. NP is the set of the problems
that can be verified in a polynomial time. Problems in both P and NP are decision problems: f:Z* — {0, 1}.
An instance x € £* satisfying f(x) =1 is called a yes instance, and an instance x € Z* satisfying f(x) =0 is
called a no instance.

Consider an instance of an NP problem. If it is a yes instance, there exists a certificate such that the
verifier, by taking the instance and the certificate as inputs, outputs 1. Otherwise, if it is a no instance,
the verifier will always output 0 for every certificate. A typical NP problem example is SAT. The verifier
takes a CNF formula (the instance) and an assignment (the certificate) as inputs, and output 1 if and only
if the assignment makes the formula evaluate to true. A yes instance, which is a satisfiable CNF formula,
can always be verified in a polynomial time given a satisfying assignment as a certificate. On the other
hand, the verifier will always output 0 in a polynomial time if the formula is not satisfiable, for any input
assignment.

NP-complete problems are those hardest problems in NP. We have seen many NP-complete problems in
the previous lectures, including SAT. We have P € NP, and whether this containment is proper is a central
open problem in computer science. If a NP-complete problem admits a polynomial time algorithm, then
P =NP.

As a remark, we have formulated SAT as a decision problem, while the search problem (find a satisfying
assignment if the formula is satisfiable, or announce that the formula is not satisfiable) is somehow no
harder. If we can solve the decision problem in a polynomial time, we can solve the search problem in a
polynomial time as follows. If a CNF formula ¢ is not satisfiable, the algorithm for the decision problem
already outputs 0, and the search problem is solved as well. If ¢ is satisfiable, we try both x; = true and
x) = false, substitute it into ¢ so that we obtain a CNF formula ¢’ with n—1 variables, and use the algorithm
to decide if ¢' is satisfiable. At least one of x; = true and x; = false will make ¢’ satisfiable, and we can
finalize the value for x;. We can iteratively find out the values for x», ..., x;,. We have applied the algorithm
for the decision problem for at most 27 times, so the overall time complexity for solving the search problem

is still a polynomial in 7. In fact, most NP problems have this “search-to-decision reduction” property.



To formally prove that one problem is no easier than the other, we use the technique “reduction”. A
reduction from a problem f to a problem g, denoted by f <j g (the subscript k is for Karp reduction), is
a polynomial time computable mapping R such that f(x) =1 if and only if g(R(x)) = 1. This implies that
a polynomial time algorithm to solve g can be used to solve f, which further implies that g is no easier
than f.

Since we have proved SAT is NP-complete (SAT is a hardest problem in NP), to show another NP problem
is NP-complete, we only need to reduce it from SAT (implying this problem is no easier than SAT; since
SAT is already the hardest NP problem, this problem is also the hardest). The “web of reductions” in
Fig. 1 presents those NP-complete problems identified by reductions (compared with Fig. 2 in the previous
lecture, we have added the two problems: 3-Coloring and Max-Cut). In particular, we have presented
the reductions for 3-SAT, Independent Set, Vertex Cover (exercise), Clique (exercise), 3-SAT (A < 3), and
3D-Matching in the previous lecture. In this lecture, we will present the reduction for ZOE, Subset-Sum,

Hamiltonian Circuit, TSP, Max-Cut and 3-Coloring.
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Figure 1: The web of reductions.

2 ZOE

Problem 1 (ZOE). Given an m x n zero-one matrix A € {0,1}*", decide if there exists a zero-one vector
x € {0,1}" such that Ax=1.

The ZOE problem can be formulated as follows. We have m constraints for n zero-one variables xj,..., x, €

{0, 1} such that each constraint takes the form

x,-1+xi2+---+xik:1.



Since ZOE is obviously in NP and we have seen 3D-matching is NP-complete, the following theorem shows

that ZOE is NP-complete.
Theorem 2. 3D-matching <y ZOE.

Proof. A 3D-matching instance can be described by a set of hyper-edges {e; = (a;,, b;,, ci,)}. For each edge
e;, we construct a variable x; € {0, 1} for the ZOE instance. The value of x; represents if edge e; is selected
in the matching. To ensure the set of selected edges forms a matching, we need to make sure, for each
vertex u in AUBUC, the sum of all those x;’s such that u € e; equals to exactly 1. This gives us a constraint
in ZOE. Therefore, we can use a set of ZOE constraints to describe the requirement that the selected edges

form a matching. O

3 Subset-Sum

Problem 3 (Subset-Sum). Given a collection of positive integers S and an integer k € Z*, decide if S contains

a subset whose sum is exactly k.

Again, it is easy to see that subset-sum is in NP, and a simple reduction can show that subset-sum is

NP-complete.
Theorem 4. ZOE <. Subset-Sum

Proof. A ZOE instance A can be rewritten as follows:

n
Z x;a; =1,
i=1

where x; € {0, 1} is the i-th entry of the vector x and a; is the i-th column of A. Equivalently, we are asked
if we can select a subset of n vectors with sum exactly an all-one vector. A natural way to view it as a
subset-sum instance is to view each vector a binary encoding of an integer. However, what we have is
that, for each £ =1,..., m, the t-th bits of those select integers add up to 1; what we want is that the sum
of those select integers is exactly the number represented by a m-bit all-one string. These two statements
are not equivalent, as there may be carries in the additions. This can be easily fixed: instead of viewing the
vector as a binary representation of a number, we can view it as a (n + 1)-ary representation of a number,

so that a carry in the addition will never happen. O

4 Hamiltonian Circuit

To show that Hamiltonian circuit is NP-complete, we first show that the following intermediate problem

is NP-complete.



Problem 5 (Hamiltonian Circuit with Paired Edges). Given an undirected multi-graph G = (V, E) (a multi-
graph is a graph where more than one edge is allowed for a pair of vertices) and a set of edge-pairs F =
{(e1, e’l), ...(ep, e;c)}, decide if G contains a Hamiltonian circuit that uses exactly one edge from each pair

in F.
Theorem 6. Hamiltonian circuit with paired edges is NP-complete.

Proof. 1t is clear that the problem is in NP, as the encoding of a valid circuit can be served as a certificate.
To show it is NP-complete, we present a reduction from the ZOE problem.

Given a ZOE instance A € {0,1}"*" we construct an instance (G = (V, E), F) for Hamiltonian circuit with
paired edges as follows. The graph G contains m + n vertices: uy,..., Uy, V1,...,Vy. Foreach i =1,...,n,
construct two edges e; = {u;, u;+1} and é; = {u;, u;+1}, and add the pair (e;, é;) to F. Here, we let v, = v.
For each j =1,...,m, let aji,...,aj, € {0,1} be the j-th row of A. If ajr = 1, construct an edge fjx =
{vj, vj+1}, and add the pair (fik,ex) to F. In particular, the number of edges between v; and vj, is exactly
the number of ones in the j-th row of A. Here, we let vy,41 = uy. This finishes the description of the
construction. The construction can clearly be done in a polynomial time.

It is easy to see that a Hamiltonian path must visit all the vertices in the following order (or a rotation of
the following order):

U —uy—-—>Uy—>0V =02 —>-—> Uy, — Uy.

In addition, for any pair of two adjacent vertices above, exactly one edge must be selected to be in the
circuit. In particular, for each i = 1,...,n, exactly one of e;,e; must be selected; for each j =1,...,m,
exactly one of those fji’s must be selected. Finally, if ; is selected, then fj; must not be selected for all j;
if e; is selected, then we know &; cannot be selected, and fj; must be selected for all j.

These observations imply that the instance we constructed exactly simulates the ZOE instance. e; being
selected represents x; = 1, while é; being selected represents x; = 0. The above observations then imply fj;
is selected if and only if x; = 1. Since the edge fj exists if and only if @i = 1, the observation that exactly
one edge from v; to vj,1 must be selected implies that }.}'_, ajxxx = 1. By considering this equation for
all j, we have Ax=1.

Since the constructed instance exactly simulates the ZOE instance, the constructed instance is a yes in-

stance if and only if the ZOE instance is a yes instance. 0J

Now we are ready to prove that Hamiltonian circuit is NP-complete. This can be done by a reduction from

the Hamiltonian circuit with paired edges problem.
Theorem 7. Hamiltonian circuit is NP-complete.

Proof. 1t is clear that the Hamiltonian circuit problem is in NP, as the encoding of a valid circuit can be
served as a certificate. To show it is NP-complete, we present a reduction from the Hamiltonian circuit

with paired edges problem.



Given a instance (G, F) of the Hamiltonian circuit with paired edges problem, we construct a Hamiltonian
circuit instance G’ as follows. Starting from G, for each pair {e = {u, v}, e’ = {t/, V'}} € F, we replace the two
edges e, € with the gadget shown in Fig. 2. This finishes the construction of G, and this construction can

clearly be done in a polynomial time.
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Figure 3: The gadget for the two pairs {e = {u, v}, e’ = {t/,V'}} and {e = {u, v}, €’ = {u", V"}}.

By some observations, it is easy to see that there are only two possible ways to visit each of the 12 in-
termediate vertices A,B,C,D,E,FG,H,I,],K,L exactly once. For the first possibility, we can visit the
12 vertices by the following order y - A—-B—-C—-F—-E—-D—-G—-H—-I—-L—-K—]—vor
the reverse of this order. For the second possibility, we can visit the 12 vertices by the following order
#—-C—-B—-A—-D—-E—-F—-I—-H—-G—J]—K—L— U, orthe reverse of this order. As a result,
if we choose to go from u, we can only reach v, and if we chose to go from v, we can only reach u. In
either case, we can no longer go from v’ to v’ or from v’ to ¢/, as the 12 vertices are already used. In G,
this says that if we choose the edge e, we cannot use the edge ¢’. Similar analysis shows that if we choose
the edge €/, we cannot use the edge e. Therefore, the gadget enforces the requirement that exactly one of

e and ¢’ must be chosen.



If an edge e = (u, v) is contained in two pairs {e = {u, v}, e’ = {u/, v'}} and {e = {u, v}, ¢’ = {u",v"'}}, we can
use the gadget in Fig. 3. The case where e is contained in more than two pairs can be handled similarly.

The remaining part of the proof is straightforward. O

5 Travelling Salesman Problem (TSP)

Problem 8 (TSP, decision version). Given an undirected complete weighted graph G = (V,E, w) and a
positive number k, decide if there is a tour that visits each vertex exactly once such that the length of the

tour is at most k.
Theorem 9. TSP is NP-complete.

Proof. Firstly, TSP is clearly in NP, as a tour can be used as a certificate. To show it is NP-complete, we
present a reduction from Hamiltonian circuit.

Given a Hamiltonian circuit instance G, we construct a TSP instance (G, k) as follows. Firstly, G’ and G
share the same vertex set. Then, for each pair of vertices u, v, if {u, v} is an edge in G, let the weight of
{u,v} be 1 in G'; if {u, v} is not an edge in G, let the weight of {u, v} be 1+ @ in G', where « is a positive
number. Finally, let k be the number of vertices in G (or G'). The construction can clearly be computed in
a polynomial time.

If G contains a Hamiltonian circuit, the same circuit is a valid TSP tour, which has length exactly | V] = k.
Thus, a yes instance for the Hamiltonian circuit is mapped to a yes instance for the TSP problem.

If G does not contain a Hamiltonian circuit, then any TSP tour must use at least one edge with weight
1+ a. As aresult, the length of the tour is at least |[V|+ a > k. Thus, a no instance for the Hamiltonian

circuit is mapped to a no instance for the TSP problem. O

In the reduction above, we have seen that it is NP-complete to decide if the minimum length TSP tour is at
most | V| or atleast | V|+a. The only requirement for a is & > 0. In fact, we can let a be a very large number.
In this case, it is NP-complete to decide if the minimum length TSP tour is reasonably short or very long.
This implies we do not have any polynomial time approximation algorithm for TSP if assuming P # NP. In
particular, we cannot even have a polynomial time approximation algorithm with the approximation ratio

as worse as an exponential factor.

Theorem 10. If we have a polynomial time F-approximation algorithm for TSP for some F that can depend
on the parameters of the TSP instance, then P= NP

Proof. Suppose we have a polynomial time F-approximation algorithm A for TSP. We show that we can
use A to solve the Hamiltonian circuit problem in a polynomial time. Since Hamiltonian circuit is NP-

complete, this implies P = NP.



Given a Hamiltonian circuit instance G, we use the same construction for (G', k) in the previous proof,
with a set to @ = F-|V|. Then we run algorithm A for this constructed instance. We discuss two cases: 1)
A outputs a tour with length at most F-|V|[; 2) A outputs a tour with length more than F-|V]|.

For the first case, we know that G contains a Hamiltonian circuit. Otherwise, the TSP tour in G’ must have
length at least |V|+a = (F +1)|V| > F-|V|, which contradicts to our assumption.

For the second case, we know that G does not contain a Hamiltonian circuit. Since A is a F-approximation
algorithm, the optimal TSP tour must have length more than F-|V|/F =|V|. On the other hand, if G con-
tains a Hamiltonian circuit, then G’ must have a TSP tour with length exactly | V|, which is a contradiction.
Thus, G must not contain a Hamiltonian circuit.

We have described above how to use A to solve the Hamiltonian circuit problem in a polynomial time. [

We say that TSP is NP-hard to approximate to within any finite factor.

6 Max-Cut

In this section, we will show that Max-Cut is NP-complete by a reduction from Independent Set. Notice

that we have seen in the previous lecture that Independent Set is NP-complete.

Problem 11 (Max-Cut, decision version). Given an undirected graph G = (V, E) and an integer k, decide if

V can be partitioned to A, B such that |E(A, B)| = k.

Problem 12 (Independent Set, decision version). Given an undirected graph G = (V, E) and an integer £k,

decide if G contains an independent set of size (at least) k.
Theorem 13. Max-Cut is NP-complete.

Proof. Max-Cut is clearly in NP, as the partition {A, B} can be served as a certificate (then we can count the
number of edges between A and B to see if it is at least k). To show Max-Cut is NP-complete, we reduce
it from the independent set problem.

Given an independent set instance (G = (V, E), k), we construct a max-cut instance (G' = (V',E'), k') as
follows. Firstly, V' contains all the vertices in V. We slightly abuse the notation and let V to denote
both vertices in the original graph G and vertices in G’ that correspond to V in the original graph. Sec-
ondly, for each edge e = {u, v} € E in the original graph, we construct two vertices u,, v, and three edges
{u, ue}, {ue, ve} and {v,, v}. Thirdly, we construct a vertex x and create an edge between x and each of the
remaining vertices. We have constructed a total of |V|+2|E| + 1 vertices and |V|+5|E| edges. Lastly, set
k' = k+4|E|. Let EQ, be the set of the edges {{x, v} | v € V} that connect the vertex x to those vertices in
V V' Let Ej, = E'\ E|,. Figure 4 shows the gadget corresponding to each edge e = {u, v} in the original
graph. Notice that, in the gadget, {u, x} and {v, x} belong to E/,, and the remaining five edges belong to EJ’E



Ue Ve
Figure 4: The edge gadget.

Suppose the independent set instance is a yes instance. Let I be an independent set in G with |I| = k. We
aim to show that G’ contains a cut {A, B} with size |E(A, B)| = k' = k + 4|E|. The vertex set A is defined as
follows. Firstly, A contains all the vertices in I. Secondly, for each edge e = {u, v} in the original graph,

e if ue I and v ¢ I, then include v, into A;

o if u¢ I and v € I, then include u, into A;

o if u,v ¢ I, then include both u, and v, into A;

« notice that we cannot have u, v € I as I is an independent set.

Then, B is the set of the remaining vertices: B=V’\ A. In particular, x € B.
Now, let us calculate |E(A, B)| = |E(A, B) N E, | +|E(A, B) N Ep|, and we will calculate each of |E(A, B) N E} |
and |E(A, B) mEl’gl. Firstly, |E(A, B) mEé/I = k, as I is a subset of A containing k vertices and x € B. Secondly,
we show that |E(A, B) ﬂE%I =4|E|. For each edge e = {u, v} in the original graph, we have three possibilities
for the five vertices in the gadget: 1) u, v, € Aand u,, v,x€ B, 2) v,u, € Aand u, Ve, X € B, and 3) u,, v € A
and u, v, x € B. It can be easily checked that the gadget contains exactly 4 edges in EJ, in any of those three
cases. Therefore, since we have |E| edges in the original graph, we have |E(A, B) ﬂE};l = 4|E|. Putting these
together, we have |E(A, B)| = k + 4|E| = k', which implies that the max-cut instance is a yes instance.
Suppose the independent set instance is a no instance, and we aim to show that the max-cut instance is
also a no instance. We prove the contra-positive of this. Suppose the max-cut instance is a yes instance:
there exist A, B such that |E(A,B)| = k' = k+4|E|. We aim to show that G contains an independent set
with k vertices. Without loss of generality, we assume x € B (if x € A, we can just rename the two sets A
and B). Let I = V n A. Let EJ be the set of edges {u, v} € E in the original graph such that u, v € I. We will
find an upper bound for |E(A, B)| = |E(A,B) N E§/| +|E(A,B)Nn E%I by finding an upper bound for each of
|E(A,B)N E,,| and [E(A, B) N Ej.
Firstly, it is clear that |E(A, B) N E{,| = |I|. Secondly, to find an upper bound for |E(A, B) N E|, we consider
each edge gadget. For each edge e = {u, v} in the original graph, if e = {u, v} € E; (i.e., we have u, v € I),
then the number of edges in E(A, B) N E;E is at most 3 in the gadget:

o if u, v, U, Ve € A, we have {u,, x},{Ve, x} € E(A,B)NE";

« if u,v,u, € Aand v, € B, we have {u,, x}, {Ue, Ve}, {Ve, V} € E(A,B) N E.;



o« if u,v,v. € A and u, € B, we have {u, ue}, {Ue, Ve}, {Ve, X} € E(A,B)N E/;

« if u,ve Aand ue, v, € B, we have {u, ue}, {v, ve} € E(A, B) N Ef.
Notice that we do not count {u, x} and {v, x}, as they have been counted in |E(A, B) N E{,I. For each edge
e = (u,v) ¢ Ef, the number of edges in E(A,B)N E’E is at most 4 in the gadget. To see this, there are 5 edges
in E(A,B)n E}E in the gadget. In addition, at least one edge will be lost: if one of u, and v, is in B, then we
lost the edge {u,, x} or {ve, x}; if we have u,, v, € A, then the edge {u,, v.} is lost. Putting these together,

we have |E(A, B) mE}EI <3|E[| +4|E\ E;| =4|E| - |E(|, and
|E(A,B)| = |E(A, B)NEy| +|E(A B) N Eg| < |I| +4|E| - |E/l.
On the other hand, since |E(A, B)| = k' = k + 4| E|, we have
[I|+4|E| - |Ef| = k + 4| E],

which implies

Il = k+|Eq|.

Finally, for each {u, v} € E, we remove one of u and v from I. After removing | Ej| vertices from I, we obtain

an independent set of size at least k, which implies the independent set instance is a yes instance. O

7 3-Coloring

Definition 14 (3-Coloring). Given an undirected graph G = (V, E) and a set of 3 colors, decide if we can

assign a color from the set to each vertex such that no two adjacent vertices have the same color.

In general, we can define k-coloring, which uses a set of k colors instead of 3 colors. 1-coloring is trivial,
as the instance is a yes instance if and only if there is no edge at all: E = @. For 2-coloring, the problem
becomes deciding if a graph is a bipartite graph, which can be easily solved in a polynomial time. We will

see that k-coloring is NP-complete for any k = 3.
Theorem 15. 3-coloring is NP-complete.

Proof. 3-coloring is clearly in NP, as a color assignment of all vertices is a certificate for a yes instance. To
show it is NP-complete, we reduce it from 3-SAT.

Given a 3-SAT instance ¢, we construct a 3-coloring instance G = (V, E) as follows. We will name the three
colors T, F, N which stand for “true”, “false”, “neutral”. The reason for this naming will be apparent soon.
Firstly, we construct three vertices named ¢, f, n and three edges {t, f},{f, n},{n, t}. It is easy to see these
3 vertices, forming a triangle, must be assigned different colors. Without loss of generality, we assume

c(t) =T,c(f) = FEc(n) = N, where c: V — {T, F, N} is the color assignment function. We call this triangle



the “palette”: in the remaining part of the graph, whenever we want to enforce that a vertex cannot be
assigned a particular color, we connect it to one of the three vertices in the palette.

For each variable x; in ¢, we construct two vertices x;, X;, and three edges {x;, X;},{x;, n},{X;, n}. This
ensures that it must be either c(x;) = T,c(X;) = F or c(x;) = F c(X;) = T. The former case corresponds to
assigning true to variable x;, and the latter case corresponds to assigning false to variable x;.

After we have constructed the gadgets simulating the Boolean assignment for variables, we need to create
a gadget to simulate each clause m. We use m = (x; vV X; V x) as an example to illustrate the reduction.
Firstly, we create a vertex m and connect it to the two vertices n, f, so that we can only have c(m) =T (i.e.,
the clause must be evaluated to true). Then, we need to create a gadget that connects the three vertices
xj, Xj and xi (constructed in the previous step) as “inputs”, and connects vertex m at the other end as
“output”. The gadget must simulate the logical OR operation.

The gadget shown on the left-hand side in Fig. 5 simulates the logical OR operation for two inputs: if both
two input vertices are assigned F, then the output vertex cannot be assigned T, for otherwise there is no
valid way to assign colors for vertices A and B; if at least one input vertex is assigned 7, say, Input 1 is
assigned T, then it is possible to assign the output vertex T, since it is always valid to assign F to A and
N to B. The gadget for the clause m = (x; vV X; V xi) can then be constructed by applying two OR gadgets,
shown on the right-hand side of Fig. 5. We do this for all the clauses.

T; o—4

Input 1 e——4

Output T; e—

Input 2 e——

Ti o

Figure 5: The OR gadget (left-hand side) and the gadget for the clause m = (x; v X; v xi) (right-hand side).

The remaining part of the proof is straightforward. We have shown that G simulate assignments to ¢.
Thus, ¢ is satisfiable if and only if there is a valid color assignment to vertices in G. Finally, it is easy to

verify that the construction of G can be done in a polynomial time. O

Exercise 16. Show that k-coloring is NP-complete for any k = 3.

7.1 3-Coloring on Planner Graph

In this section, we consider the coloring problem on planner graphs. We have seen that 1-coloring and
2-coloring are polynomial time solvable even for general graphs. Thus, these two problems for planner

graphs are also in P. On the other hand, the famous four color theorem states that every planner graph is

10



4-colorable. Thus, every instance of the k-coloring problem on planner graphs is a yes instance for k = 4.
The only remaining problem is the 3-coloring problem on planner graphs. In fact, k = 3 is the only value

for k making the problem NP-complete.
Theorem 17. 3-coloring is NP-complete for planner graphs.

Proof. Again, the problem is clearly in NP. To show it is NP-complete, we reduce it from the 3-coloring
problem for general graphs. Given a 3-coloring problem instance G, we aim to construct a planner graph
G’ so that G is 3-colorable if and only if G’ is. The idea is that, we embed G onto a plane. Then, whenever
we have two crossing edges {x, x'} and {y, y'}, we create a gadget that simulates the two edges while making
the graph planner.
Firstly, we create a gadget in Fig. 6 which is called a “crossover gadget”, and we will denote it by H. We
can verify that it satisfies the following two properties:

1. for any valid color assignment ¢ of H, we must have c(x) = ¢(x’) and c(y) = c(y');

2. there exist two valid color assignments cy, ¢; of H such that ¢ (x) = ¢;(x') = ¢1(y) = ¢1(y) and ¢ (x) =

c2(x) # c2(y) = c2 ().

The gadget H ensures that the color of x and x’ must be the same, while we want any two adjacent vertices
to have different colors. To apply this gadget on an edge {u, v} that intersect another edge {/, v'}, we only
need to let u, 1’ be x,x’ respectively, and let v, v’ be connected to y, y' respectively. The first property of
the gadget then ensures u and v must have different colors, and the same holds for ' and v'. The second
property ensures that, the color assignments for u, v do not place any restriction on the color assignments

for u',v'.
x

Figure 6: The crossover gadget H.

The case where an edge {u, v} intersects multiple edges can be handled similarly. Fig. 7 illustrates what we
can do for an edge intersecting four other edges. In Fig. 7, u and v’ must be assigned the same color by
the first property of the gadget, so u and v must be assigned different colors.

We have finished describing the construction. The remaining part of the proof is straightforward. O

11



Figure 7: Replacing an edge {u, v} with four crossing by four crossover gadgets.
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