
AI2615 算法设计与分析 2020-2021春季学期

Lecture 13 – Max-SAT and Max-Cut
2021年 5月 21日

Lecturer: 张驰豪 Scribe: 陶表帅

1 Max-SAT

Consider a CNF formula
ϕ=C1 ∧C2 ∧·· ·∧Cm .

We will use ℓi to denote the number of the literals in the i -th clause. We will use 1 and 0 to represent the
Boolean value “true” and “false”. We will use m and n to denote the number of clauses and the number of
variables respectively. In addition, we assume that each clause does not contain a variable and its negation
without loss of generality. In particular, if a clause contains both xi and x̄i , we know this clause is always
satisfied, and we can just remove this clause. Finally, we assume that ϕ does not contain two identical
clauses.
There is a polynomial time algorithm for deciding whether ϕ has a satisfying assignment if we have ℓi ≤ 2

for each i = 1, . . . ,m, while this decision problem is NP-complete even if ℓi = 3 for each i = 1, . . . ,m. In this
section, we consider the following maximization problem.

Problem 1 (Max-SAT). Given a CNF formula ϕ, find an assignment that satisfies as many clauses as pos-
sible.

Max-SAT is NP-hard even if ℓi ≤ 2 for each i = 1, . . . ,m. In this section, we will learn four approximation
algorithms for max-SAT. We will use OPT to denote the maximum number of clauses that can be satisfied
by a certain assignment, i.e., the optimal solution.

1.1 Algorithm 1: Uniformly at Random Assignments

Suppose, for each variable xi , we assign xi = 1 with probability 0.5 and assign xi = 0 otherwise. That is,
we flip a fair coin to decide the value for each variable xi . Suppose the coin flips for the variables are
independent. For each clause Ci that contains ℓi literals, it is satisfied with probability 1−2−ℓi . To see
this, each literal evaluates to false with probability 0.5, so the probability that all the literals are false is
2−ℓi .
Let σ ∈ {0,1}n be a random assignment sampled from the distribution described above. Let v(σ) be the
number of the clauses satisfied by σ. We calculate the expected number of satisfied clauses by the linearity

1

of expectation:

E
σ

[v(σ)] = E
σ

[
m∑

i=1
1

(
Ci is satisfied by σ

)]

=
m∑

i=1
E
σ

[
1

(
Ci is satisfied by σ

)]
(linearity of expectation)

=
m∑

i=1
Pr

(
Ci is satisfied by σ

)
=

m∑
i=1

(
1−2−ℓi

)
(as we have just seen)

≥ 1

2
m. (since ℓi ≥ 1 for each i)

Therefore, the expected number of satisfied clauses is at least 1
2 m. This implies that there exists an assign-

ment that satisfies at least 1
2 m clauses (think about this: if the average height of the students in a class is

1.7 meters, there must exist a student with height at least 1.7 meters).
On the other hand, we know that OPT≤ m for sure. Therefore, the assignment σ that satisfies at least 1

2 m

clauses is a 0.5-approximation:
v(σ) ≥ 1

2
m ≥ 1

2
OPT.

Now, the only remaining problem is, how to find such a σ? This will use a common technique based on
conditional expectation.
Consider the assignment for the variable x1. We have

1

2
m ≤ E

σ
[v(σ)]

= E
x1∼{0,1}

[
E
σ

[v(σ) | x1]
]

= Pr(x1 = 1)E
σ

[v(σ) | x1 = 1]+Pr(x1 = 0)E
σ

[v(σ) | x1 = 0]

= 1

2

(
E
σ

[v(σ) | x1 = 1]+E
σ

[v(σ) | x1 = 0]
)

.

This implies at least one of Eσ [v(σ) | x1 = 1] and Eσ [v(σ) | x1 = 0] is greater than or equal to 1
2 m. On the

other hand, we can evaluate Eσ [v(σ) | x1 = 1] and Eσ [v(σ) | x1 = 0] in polynomial time. In fact, by substitute
x1 = 1 or x1 = 0 into ϕ, we obtain a CNF formula with n −1 variables, and we can use the same method
above to calculate the expected number of satisfied clauses. We will finalize the assignment to x1 such that
the expected number of satisfied clauses is at least 1

2 m.
After deciding the assignment to x1, we can iteratively decide the assignments to x2, x3, . . . , xn . Throughout
this process, we can always make sure the expected number of satisfied clauses is at least 1

2 m. When all
the variables’ assignments are finalized, the number of satisfied clauses is determined, and is at least 1

2 m.
Thus, this gives a polynomial time 0.5-approximation algorithm.

2

This conditional expectation technique can be applied in general to convert an expectation observation to
a deterministic algorithm.
If we have ℓi = 3 for all i , we have 1−2−ℓi = 7

8 , and the algorithm above gives a 7
8 -approximation. This is in

fact the best we can do (assuming P 6=NP). Håstad [2001] proved that the max-3-SAT problem is NP-hard
to approximate to within factor (7

8 +ε) for any constant ε> 0.
However, for general max-SAT problem without ℓi = 3, we can do better than a 0.5-approximation. We
will see some approximation algorithms with better approximation guarantees.

1.2 Algorithm 2: Flipping Biased Coins

When analyzing the expected number of satisfied clauses, we have used the following lower bound:

1−2−ℓi ≥ 1

2
.

This is quite a loose bound. In fact, the bound is only tight for ℓi = 1, i.e., the clause Ci is a singleton that
contains only one literal. If we have ℓi ≥ 2, we have a much better lower bound 3

4 for 1−2−ℓi . This gives
us an intuition that those singletons are the bottleneck for improving the approximation guarantee when
we are using this random assignment technique.
A natural idea for improving Algorithm 1 is to use a biased coin for each variable xi , with the probability
based on the occurrences of xi and x̄i in ϕ. For example, if we have a singleton clause xi and a clause
x̄ j ∨ xi , increasing the probability for xi = 1 will increase the satisfying probability for each of the two
clauses, which is beneficial. As another example, if we have a singleton clause xi and a singleton clause
x̄i , we know that exactly one of the two clauses is satisfied regardless of the assignment to xi . In this case,
we know that OPT≤ m −1 since at least one clause is not satisfied, and the approximation guarantee can
be improved based on this tighter upper bound for OPT.
Let S = {xi | both xi and x̄i appear as singleton clauses}, and let t = |S|. Our first observation is OPT≤ m−t .
We rewrite ϕ as

ϕ=
[∧

xi∈S
(xi ∧ x̄i)

]
∧C ′.

We know that the number of satisfied clauses in the first part ∧
xi∈S (xi ∧ x̄i) is exactly t , regardless of how

we assign values to variables in S.
For singletons in C ′, if we know some xi appears in C ′, we know x̄i is not in C ′ (for otherwise xi ∈ S); if
we know x̄i appears in C ′, we know xi is not in C ′. Let

zi =
 x̄i if x̄i appears in C ′

xi otherwise
,

and we substitute all xi ’s by zi ’s. After this, all the singletons in C ′ are not negations. Remembering that
the singletons are the bottleneck, intuitively, increasing the probability for zi = 1 is more beneficial. Let p

be the probability for zi = 1.

3

Now, we evaluate the probability that each clause C j =
(∨

i∈P j
zi

)
∨

(∨
k∈N j

z̄k

)
is satisfied, where P j is the

set of indices for those variables who appear as literals in C j and N j is the set of indices for those variables
whose negations appear as literals in C j . For each singleton clause, it is satisfied with probability p . For
each non-singleton clause, it is satisfied with probability

1−
(∏

i∈P j

(1−p)

)
·
(∏

k∈N j

p

)
= 1− (1−p)|P j |p |N j |.

For non-singletons, this is minimized when |P j | = 0 and |N j | = 2, and the satisfying probability for each
non-singleton clause is at least 1−p2. Putting these together, the probability that a clause is satisfied is at
least min{1−p2, p}, and this lower bound is tightest for p =

p
5−1
2 ≈ 0.618.

By the same calculation in the previous section, the expected number of satisfied clauses in C ′ is at least
0.618(m −2t) (notice that C ′ has m −2t clauses). Thus, by OPT≤ m − t , we have

E
σ

[v(σ)] ≥ t +0.618 · (m −2t) ≥ t +0.618 · (OPT− t) ≥ 0.618 ·OPT.

By the same conditional expectation technique in the previous section, this observation can be converted
to a polynomial time 0.618-approximation. To see this for one more time, we have

0.618(m −2t) ≤ p E
σ

[v(σ) | z1 = 1]+ (1−p)E
σ

[v(σ) | z1 = 0] ,

and we can conclude that at least one of [v(σ) | z1 = 1] and Eσ [v(σ) | z1 = 0] is greater than or equal to
0.618(m −2t) (otherwise, the right-hand side of the inequality is strictly less than p ·0.618(m −2t)+ (1−
p) ·0.618(m −2t) = 0.618(m −2t), which invalidates the inequality). We find the assignment for z1 that
yields the larger conditional expectation, and we subsequently decide each of z2, z3, . . . , zn one-by-one.

1.3 Algorithm 3: Heterogeneous Probabilities

We have used the same probability p for all the variables in Algorithm 2. A natural way to improve the
approximation guarantee is to use different, customized probabilities for different variables. We will use
the same technique of Integer Program formulation and Linear Program relaxation in the previous lectures.
We will use yi to represent a variable xi and z j to represent a clause C j . The max-SAT problem can be
formulated by the following integer program:

max
∑m

j=1 z j

subject to ∀ j ∈ [m] :
∑

i∈P j
yi +∑

k∈N j
(1− yk) ≥ z j

∀i ∈ [n] : yi ∈ {0,1}

∀ j ∈ [m] : z j ∈ {0,1}

(1)

Recall in previous lectures that solving an integer program is NP-hard while solving a linear program can
be done in polynomial time, and a common technique is the linear program relaxation. We relax this

4

integer program to the following linear program:

max
∑m

j=1 z j

subject to ∀ j ∈ [m] :
∑

i∈P j
yi +∑

k∈N j
(1− yk) ≥ z j

∀i ∈ [n] : yi ∈ [0,1]

∀ j ∈ [m] : z j ∈ [0,1]

(2)

and let {y∗
i }i∈[n] ∪ {z∗

j } j∈[m] be its optimal solution. Let OPT(I P) be the optimal objective value for the
integer program, which equals to the optimal number of satisfied clauses OPT. Let OPT(LP) be the optimal
objective value for the linear program. We have OPT(I P) ≤ OPT(LP), since the linear program has a larger
feasible region than the integer program.
A natural way to interpret each y∗

i is to view it as the probability that xi is assigned 1. In the probability
distribution defined by this, for each clause C j , we have

Pr
(
C j is not satisfied

)= (∏
i∈P j

(1− y∗
i)

)(∏
k∈N j

y∗
k

)

≤
(

1

ℓ j

(∑
i∈P j

(1− y∗
i)+ ∑

k∈N j

y∗
k

))ℓ j

(by the AM-GM inequality)

=
(

1

ℓ j

(
ℓ j −

(∑
i∈P j

y∗
i + ∑

k∈N j

(1− y∗
k)

)))ℓ j

≤
(

1−
z∗

j

ℓ j

)ℓ j

. (by the constraint ∑
i∈P j

yi +∑
k∈N j

(1− yk) ≥ z j)

Therefore, we have

E
σ

[v(σ)] ≥
m∑

j=1

1−
(

1−
z∗

j

ℓ j

)ℓ j


≥
m∑

j=1
z∗

j

(
1−

(
1− 1

ℓ j

)ℓ j
)

(†)

= OPT(LP) ·
m∑

j=1

(
1−

(
1− 1

ℓ j

)ℓ j
)
·

≥ OPT ·
m∑

j=1

(
1−

(
1− 1

ℓ j

)ℓ j
)

≥
(
1− 1

e

)
OPT.

To see the step (†), notice that the function h(z) = 1− (1− z
ℓ)ℓ defined on [0,1] is concave, so the curve for

h(z) is above the line passing through the two points (0,h(0)) and (1,h(1)). The expression for this line is(
1− (1− 1

ℓ)ℓ
)

z.
Therefore, we have seen that the expected number of the satisfied clauses is at least (1−1/e)OPT≈ 0.632 ·
OPT. By the conditional expectation technique, we have a polynomial time 0.632-approximation algorithm.

5

1.4 Algorithm 4: Combining Algorithm 1 and Algorithm 3

In fact, this approximation guarantee can be further improved. Our random assignment in Algorithm 1
guarantees that

E
σ

[v(σ)] ≥
m∑

i=1

(
1−2−ℓi

)
,

and our random assignment in Algorithm 3 guarantees that

E
σ

[v(σ)] ≥
m∑

i=1

(
1−

(
1− 1

ℓi

)ℓi
)

z∗
j .

The intuition here is that, for Algorithm 1, the bottleneck comes from those singletons, while for Algorithm
3, the bottleneck comes from the opposites—the clauses with large numbers of literals.
Based on this intuition, we can just implement both Algorithm 1 and Algorithm 3 and take the better
solution. Let σ1 and σ3 be the random assignments from Algorithm 1 and Algorithm 3 respectively. We
have

E [max{v(σ1), v(σ3)}] ≥ E

[
1

2
v(σ1)+ 1

2
v(σ3)

]
= 1

2
(E[σ1]+E[σ3])

≥ 1

2

(
m∑

i=1

(
1−2−ℓi

)
+

m∑
i=1

(
1−

(
1− 1

ℓi

)ℓi
)

z∗
i

)

≥ 1

2

m∑
i=1

z∗
i

((
1−2−ℓi

)
+

(
1−

(
1− 1

ℓi

)ℓi
))

≥ 0.75
m∑

i=1
z∗

i (believe Chihao that this is correct!)

= 0.75 ·OPT(LP) ≥ 0.75 ·OPT,

which implies this new algorithm is a 0.75-approximation.

2 Max-Cut

Problem 2 (Max-Cut). Given an undirected graph G(V ,E), find a partition {L,R} of V such that the number
of edges between L and R , E(L,R), is maximized.

This problem is similar to the min-cut problem in the previous lectures, but this time, we are maximizing
the number of edges in between. We have seen that the min-cut problem can be solved in polynomial time,
by solving the max-flow problem. However, the max-cut problem is NP-hard. In this section, we will learn
an elegant approximation algorithm to this problem.
The very first idea may be formulating the problem by an integer program, and then relax it to a linear
program. Suppose we have a variable xu for each vertex u, such that xu = 0 if u ∈ L and xu = 1 if u ∈ R .

6

In this case, for each edge {u, v}, we earn 1 if the values of xu and xv are different. This is represented as
xu ⊕xv . However, an x-or operator is difficult to be interpreted as a linear operator.
An alternative way to do this is to have xu ∈ {−1,1}. Then we are going to maximize the objective∑

{u,v}∈E
1
2 (1−xu xv). This gives us the following quadratic integer program:

max
∑

{i , j }∈E
1
2 (1−xi x j)

subject to ∀i ∈V : xi ∈ {−1,1}
(3)

Then we relax xi such that xi ∈ [−1,1]. This gives us a quadratic program:

max
∑

{i , j }∈E
1
2 (1−xi x j)

subject to ∀i ∈V : xi ∈ [−1,1]
(4)

However, the objective here is quadratic and non-convex. Solving a quadratic program is still NP-hard.
We will learn a different way to relax (3), by relaxing xi to a n-dimensional vector, so that we have a vector
program:

max
∑

{i , j }∈E
1
2

(
1−x>

i x j
)

subject to ∀i ∈V : x>
i xi = 1

(5)

This vector program is clearly a relaxation of (3): if we restrict each vector xi such that the first entry must
be either 1 or −1 and all the remaining entries must be 0, we have exactly (3).
This vector program is a special case of a positive semi-definite program. Before we introduce this, let us
review some linear algebra basics.

2.1 Linear Algebra Basics

Definition 3. A symmetric square matrix A is positive semi-definite, denoted by A º 0, if x>Ax ≥ 0 for all
x ∈Rn .

We prove the following proposition.

Proposition 4. The followings are equivalent:

1. A º 0.

2. All the eigenvalues of A are non-negative.

3. There exists U = [u1 u2 · · · un] where ui ∈Rn such that A =U>U .

To prove this, we make use of the following important theorem.

Theorem 5 (Spectral DecompositionTheorem). An n×n symmetric matrix has n real eigenvalues λ1, . . . ,λn

with the corresponding eigenvectors v1 . . . , vn which are orthonormal. Moreover, we have

A =V ΛV > =
n∑

i=1
λi vi v>

i ,

7

where

V = [v1 v2 · · · vn] and Λ=



λ1

λ2 0
λ3

0 . . .

λn


.

Now we can prove Proposition 4.

Proof of Proposition 4. (1 =⇒ 2) Suppose A º 0. For each eigenvalue λwith eigenvector v , by the definition
of positive semi-definite matrices, we have 0 ≤ v>Av = v>λv =λ‖v‖2, which implies λ≥ 0 (notice that an
eigenvector v cannot be a zero vector, so ‖v‖2 > 0).
(2 =⇒ 3) Suppose all eigenvalues of A are non-negative. ByTheorem 5, we have A =V ΛV > = (V

p
Λ)(V

p
Λ)>,

where

p
Λ :=



√
λ1 √

λ2 0√
λ3

0 . . . √
λn


.

We then have A =U>U where U = (V
p
Λ)>.

(3 =⇒ 1) Suppose there exists U = [u1 u2 · · · un] where ui ∈Rn such that A =U>U . For any x ∈Rn ,
we have x>Ax = x>U>Ux = (Ux)>(Ux) = ‖Ux‖2 ≥ 0, which implies A º 0.

2.2 Positive Semi-Definite Program

The general form of a positive semi-definite program is as follows:

max C ·X

subject to Ak ·X ≤ bk k = 1, . . . ,m

X º 0

(6)

where · is the Frobenius inner product.
A positive semi-definite program can be solved in polynomial time. It is more general than a linear pro-
gram. For example, the linear program

max 2x −3y

subject to x + y ≤ 2

3x − y ≤ 1

x ≥ 0, y ≥ 0

(7)

8

can be rewritten as the following positive semi-definite program

max

 2 0

0 −3

 ·
 x 0

0 y


subject to

 1 0

0 1

 ·
 x 0

0 y

≤ 2 3 0

0 −1

 ·
 x 0

0 y

≤ 1 x 0

0 y

º 0

(8)

A positive semi-definite program is equivalent to a vector program. The general form (6) can be rewritten
as the following general form vector program:

max
∑

1≤i , j≤n C (i , j)u>
i u j

subject to ∑
1≤i , j≤n Ak (i , j)u>

i u j ≤ bk

∀i : ui ∈Rn

(9)

Here, we have decomposed the positive semi-definitematrix X to X =U>U , whereU = [u1 u2 · · · un],
according to Proposition 4.
Now, coming back to the vector program (5), we know that it is equivalent to a positive semi-definite
program, which can be solved in polynomial time. Suppose {x∗

1 , . . . , x∗
n } is an optimal solution, and let

OPT(V P) be the value of the optimal objective. Since we have seen that the vector program is a relaxation,
we have OPT(V P) ≥ OPT, where OPT is the optimal value for the max-cut instance (i.e., the maximum
number of edges between L and R). It remains to convert {x∗

1 , . . . , x∗
n } to a max-cut solution.

We find a random separating hyper-plane in Rn (that passes through the origin). Those x∗
i on one side of

the plane correspond to i ∈ L and those x∗
j on the other side correspond to j ∈ R .

Before we move on, notice that, to sample a random hyper-plane in Rn , it suffices to sample a normal
vector of this plane with a unit length. This can be done by sampling r = (r1, . . . ,rn) such that each

ri ∼N(0,1)

is sampled from a normal distribution, and then normalize the vector with r
‖r‖ . The probability density

function is then

Pr(r1, . . . ,rn) =
n∏

i=1

1p
2π

exp

(
−r 2

i

2

)
= (2π)−

n
2 exp

(
−‖r‖2

2

)
.

Therefore, fixing the length ‖r‖, this is a uniform distribution, as the probability density function is a
constant function.

9

Finally, for each x∗
i and x∗

j , a random hyper-plane separates them with probability equals to the angle

between the two vectors, divided by π. This probability is
arccos((x∗

i)>x∗
j)

π . Therefore, the expected number
of edges between A and B is

∑
{i , j }∈E

Pr(i and j are separated) = ∑
{i , j }∈E

arccos((x∗
i)>x∗

j)

π
.

On the other hand, we have
OPT≤ OPT(V P) = ∑

{i , j }∈E

1

2

(
1− (x∗

i)>x∗
j

)
.

Let
α∗ = min−1≤x≤1

2arccos x

π(1−x)
≈ 0.878.

We have an α∗-approximation algorithm.
Interesting enough, if we assume the unique game conjecture (search this on the Internet if you are inter-
ested in), this is the best we can do. Khot et al. [2007] showed that, assuming the unique game conjecture,
it is NP-hard to approximate the max-cut problem to within a factor of α∗+ε for any constant ε> 0.
As a side note, the unique game conjecture sometimes gives stronger inapproximability results than those
inapproximability results based on P 6=NP. For example, we have seen in the previous lecture that there is
a 2-approximation algorithm for the vertex cover problem. The unique game conjecture suggests that this
is the best we can do (achieving (2−ε)-approximation is NP-hard for any ε > 0) Khot and Regev [2008],
while the best inapproximability factor for P 6=NP is

p
2−ε (for any ε> 0) Khot et al. [2017].

参考文献

Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–859, 2001. 3

Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε. Journal of

Computer and System Sciences, 74(3):335–349, 2008. 10

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results
for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357, 2007. 10

Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and grassmann graphs. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 576–589, 2017.
10

10

	Lecture 13 – Max-SAT and Max-Cut
	Max-SAT
	Algorithm 1: Uniformly at Random Assignments
	Algorithm 2: Flipping Biased Coins
	Algorithm 3: Heterogeneous Probabilities
	Algorithm 4: Combining Algorithm 1 and Algorithm 3

	Max-Cut
	Linear Algebra Basics
	Positive Semi-Definite Program

