
AI2615 算法设计与分析 2020-2021春季学期

Lecture 12 – Network Flow
2021年 5月 14日

Lecturer: 张驰豪 Scribe: 陶表帅

In Fig. 1, suppose we would like to build a data transmission channel from s to t , by using the intermediate
routers a,b,c,d ,e . Each edge in the graph has a bandwidth, which gives a capacity constraint indicating
themaximum rate of data that can be transferred. What is themaximum rate of data that can be transferred
from s to t? This is the maximum flow problem.

s

a

b

c

d

e

t

3

3

4

10

2

1

1

5

1

2

5

Figure 1: A flow network.

1 Maximum Flow Problem

Definition 1. Given a directed graph G = (V ,E) with a source s and a sink t , and a capacity ce > 0 assigned
to each edge e , a flow f is a map f : E →R≥0 satisfying the followings (for e = (u, v), we denote f (e) by fe

or fuv):

• Capacity Constraint: for each e ∈ E , fe ≤ ce , and

• Flow Conservation: for each u ∈V \ {s, t },
∑

v :(v,u)∈E
fvu = ∑

w :(u,w)∈E
fuw .

The value of a flow f , denoted by v(f), is defined as v(f) = ∑
v :(s,v)∈E

fsv .

Problem 2 (Maximum Flow). Given a directed graph G = (V ,E) with a source s, a sink t , and capacity
constraints c : E →R+, find a flow f with the maximum value.

Let us consider a simpler example in Fig. 2. The source s has two outgoing edges: (s,u) and (s, v). Since
csu = 20 and csv = 10, the total amount of flow we can push from s to t is at most 30. Therefore, we have
v(f) ≤ 30 for any flow f . In fact, there exists a flow f with value exactly 30: fsu = 20, fsv = 10, fuv =
10, fut = 10 and fv t = 20. We have seen that f is a maximum flow.

1

s

u

v

t

20

10

30

10

20

Figure 2: A flow network.

2 Ford-Fulkerson Algorithm

The maximum flow problem can be formulated by a linear program.

max
∑

u:(s,u)∈E
fsu

subject to ∀(u, v) ∈ E : 0 ≤ fuv ≤ cuv

∀u ∈V \ {s, t } :
∑

v :(v,u)∈E
fvu = ∑

w :(u,w)∈E
fuw

(1)

Due to the nature of the maximum flow problem, the simplex method for this linear program has a combi-
natorial interpretation. Suppose we start from the origin vertex (fsu , fsv , fuv , fut , fv t) = (0,0,0,0,0) of the
simplex describing the feasible region. If we find a s-t path and assign a flow on this path that meets the
capacity constraints (i.e., for each edge e on this path p , we assign fe = c where c = mine∈p ce) and update
f , we move from one vertex of the feasible region to another such that the objective, which is the value
of the flow in this case, increases. For example, if we use the s-t path s → v → t , the maximum amount
of flow we can push on this path is 10, and we update f to (fsu , fsv , fuv , fut , fv t) = (0,10,0,0,10). We have
left the two hyper-planes defined by fsv = 0 and fv t = 0 respectively, and we have reached the hyper-plane
fsv = 10. In the simplex describing the feasible region, we move from one vertex to another such that the
objective ∑

u:(s,u)∈E fsu increases. It is clear that the objective increases. We will not formally prove the
fact that we have reached another vertex.
We can perform this operation iteratively, until there is no more s-t path on which we can push a positive
amount of flow, equivalently, until every s-t path contains an edge e such that fe = ce . In our example, we
can push a flow of amount 10 on the path s → u → t in the next iteration, and then push a flow of amount 10

on the path s → u → v → t in the following iteration. We reach (fsu , fsv , fuv , fut , fv t) = (20,10,10,10,20),
which is maximum. See Fig. 3 for an illustration of these.
However, this operation along cannot always guarantee a maximum flow. Using the example in Fig. 2
again, if the first path we consider is s → u → v → t , the maximum amount of flow on this path is 20. After
we have reached (fsu , fsv , fuv , fut , fv t) = (20,0,20,0,20), we can no longer find another s-t path such that
a positive amount of flow can be pushed. The value of f for now is 20, which is sub-optimal. We need
another operation to continue improving f .
After we have reached (fsu , fsv , fuv , fut , fv t) = (20,0,20,0,20), we can push 10 units of flow on the path s →

2

s

u

v

t

0

0

0

0

0

s

u

v

t

0

10

0

0

10

s

u

v

t

10

10

0

10

10

s

u

v

t

20

10

10

10

20

Figure 3: Iteratively find a s-t path and push a maximum amount of flow on the path.

v → u → t . Although (v,u) ∉ E , we can achieve this by decrease the amount of flow on (u, v) from 20 to 10.
In particular, the flow conservation constraint on vertex v still holds: we have increased the amount of flow
on (s, v) by 10 units and decreased the amount of flow on (u, v) by 10 units. See Fig. 4 for an illustration.
After this operation, we reach the maximum flow f with (fsu , fsv , fuv , fut , fv t) = (20,10,10,10,20).

+10

−10

+10

s

u

v

t

20

0

20
0

20

s

u

v

t

20

10

10

10

20

Figure 4: Push 10 units of flow on the path s → v → u → t .

To formally discuss this operation, we define the residual network with respect to a flow f .

Definition 3. Given a directed graph G = (V ,E) with a source s, a sink t , capacity constraints c : E → R+,
and a flow f , the residual network with respect to f , denoted by G f = (V ,E f), shares the same vertex set
V , and the edge set E f is defined such that (u, v) ∈ E f if one of the followings holds:

1. (u, v) ∈ E and fuv < cuv . In this case, the capacity of (u, v) is defined as cuv − fuv .

2. (v,u) ∈ E and fvu > 0. In this case, the capacity of (u, v) is defined as fvu .

For Case 1 with fuv < cuv , we are still allowed to push extra cuv − fuv units of flow on the edge (u, v). For
Case 2 with fvu > 0, we are allowed to push fvu units of flow in the reverse direction (u, v); equivalently,

3

we can reduce the amount of flow on (v,u) by fvu units.
An example of the residual network for the network in Fig. 2 is shown in Fig. 5.

s

u

v

t

20

0

20

0

20

s

u

v

t

20

10

10

20

2010

Figure 5: A flow f with (fsu , fsv , fuv , fut , fv t) = (20,0,20,0,20) (left-hand side) and the residual network
with respect to f (right-hand side).

For each of the two operations we discussed earlier, it corresponds to a path on the residual network
G f . We will call a path in the residual network an augmenting path. It turns out that the algorithm that
iteratively finds an augmenting path and pushes a maximum amount of flow on the path always finds a
maximum flow. This is precisely Ford-Fulkerson Algorithm (see Algorithm 1).

Algorithm 1 Ford-Fulkerson Algorithm
FoRd-FulKeRson(G = (V ,E), s, t ,c)

1: initialize f such that fe = 0 for each e ∈ E

2: while there exists an s-t path p (an augmenting path) in G f :
3: Augment(f , p) // The subroutine Augment is defined in Algorithm 2
4: endwhile

5: return f

Algorithm 2 Subroutine Augment
Augment(f , p)

1: find an edge on the path p with minimum capacity b (the capacity is the one defined in G f)
2: for each e = (u, v) ∈ p:
3: if (u, v) ∈ E : update f (e) ← f (e)+b

4: if (v,u) ∈ E : update f (e) ← f (e)−b

5: endfor

To analyze the time complexity for Ford-Fulkerson Algorithm, it is easy to see that each while-loop exe-
cution requires O(m) time: it requires O(m) time to find an augmenting path, to perform Augment(f , p),
and to update the residual network G f . Suppose all the capacities are integers. We can push 1 unit of flow
on each augmenting path at minimum. Let C = ∑

u:(s,u)∈E csu . Then C is an upper bound on the value of
the maximum flow. We needs to execute the while-loop for at most C times. Therefore, the time com-
plexity for Ford-Fulkerson Algorithm is O(C m). In fact, it can be shown by providing tight examples that

4

this time complexity bound is tight. This implies that Ford-Fulkerson Algorithm does not always run in a
polynomial time, as C may not be bounded by a polynomial of the input size. In Sect. 4, we will learn a
polynomial time algorithm, Edmonds-Karp Algorithm, which adapts Ford-Fulkerson Algorithm by careful
selections of augmenting paths.
In the next section, we will prove the correctness of Ford-Fulkerson Algorithm, based on an important and
useful theorem—the max-flow min-cut theorem.

3 Max-Flow Min-Cut Theorem

Similar to what we have done in the strong duality theorem, we aim to find a tight upper bound for the
value of the maximum flow. Clearly, C =∑

u:(s,u)∈E csu is an upper bound, but it is not tight.

Definition 4. Given a directed weighted graph G = (V ,E , w), a source s and a sink t , a cut is a partition of
V to two vertex sets L and R such that s ∈ L and t ∈ R . The value of the cut is defined as

c(L,R) = ∑
(u,v)∈E ,u∈L,v∈R

w(u, v).

If viewing the capacity of an edge as the weight of it, the value of a minimum cut is a tight upper bound
to the value of a maximum flow. This is the Max-Flow Min-Cut Theorem

Theorem 5 (Max-Flow Min-Cut). Given a directed graph G = (V ,E) with a source s, a sink t and capacity

constraints c : E → R+, letting f be a maximum flow and {L,R} be a cut with minimum value, we have

v(f) = c(L,R).

We first show that the value of any cut is an upper bound to the value of any flow.

Lemma 6. Given a directed graph G = (V ,E) with a source s, a sink t and capacity constraints c : E →R+, we

have v(f) ≤ c(L,R) for any flow f and any cut {L,R}.

Let
f (L,R) = ∑

(u,v)∈E ,u∈L,v∈R
fuv

be the total amount of flow going from L to R , and let

f (R,L) = ∑
(u,v)∈E ,u∈R,v∈L

fuv

be the total amount of flow going from R to L. Notice that L contains s and R contains t . The following
proposition is intuitive: it says that the total amount of flow going from s to t is the total amount of flow
leaving L minus the total amount of flow entering L.

Proposition 7. v(f) = f (L,R)− f (R,L).

5

Proof. For a vertex u, let f out (u) =∑
w :(u,w)∈E fuw be the total amount of flow leaving u, and let f i n(u) =∑

v :(v,u)∈E fvu be the total amount of flow entering u. By the flow conservation constraint, we have f i n(u) =
f out (u) for each u ∈ V \ {s, t }, f i n(s) = 0 and f out (s) = v(f). Summing up these for all vertices in L, we
have ∑

u∈L

(
f out (u)− f i n(u)

)
= f out (s)+ ∑

u∈L\{s}
0 = v(f). (2)

On the other hand, consider each edge (u, v). If u, v ∈ L, fuv is counted once in each of f out (u) and f i n(v),
which is canceled in the summation ∑

u∈L
(

f out (u)− f i n(u)
)
. If u, v ∈ R , it will not be counted in this

summation. If u ∈ L and v ∈ R , fuv is counted once in f out (u). If u ∈ R and v ∈ L, fuv is counted once in
f i n(v). Putting these together, we have

∑
u∈L

(
f out (u)− f i n(u)

)
= ∑

(u,v)∈E ,u∈L,v∈R
fuv −

∑
(u,v)∈E ,u∈R,v∈L

fuv = f (L,R)− f (R,L). (3)

Equations (2) and (3) imply this proposition.

With this proposition, Lemma 6 follows immediately.

Proof of Lemma 6. By Proposition 7, we have

v(f) ≤ f (L,R) = ∑
(u,v)∈E ,u∈L,v∈R

fuv ≤ ∑
(u,v)∈E ,u∈L,v∈R

cuv = c(L,R).

Finally, to prove Theorem 5, we show that there exists a cut {L,R} such that the flow f output by Ford-
Fulkerson Algorithm satisfies v(f) = c(L,R). This proves not only Theorem 5, but also the correctness of
Ford-Fulkerson Algorithm.

Proposition 8. There exists a cut {L,R} such that the flow f output by Ford-Fulkerson Algorithm satisfies

v(f) = c(L,R).

Proof. Let f be the flow output by Ford-Fulkerson Algorithm. We will construct L and R such that v(f) =
c(L,R). Let G f be the residual network with respect to f . Let L be the set of vertices reachable from s

in G f , and let R = V \ L. To show v(f) = c(L,R), we will show that f (L,R) = c(L,R) and f (R,L) = 0, then
Proposition 7 implies this proposition.
To show that f (L,R) = c(L,R), it suffices to show that, for any edge (u, v) such that u ∈ L and v ∈ R , we
have fuv = cuv . Indeed, if fuv < cuv , then (u, v) should still be in G f by our definition of residual network.
This means v is also reachable from s (since u is reachable from s), which contradicts to v ∈ R .
To show that f (R,L) = 0, it suffices to show that, for any edge (u, v) such that u ∈ R and v ∈ L, we have
fuv = 0. Indeed, if fuv > 0, then (v,u) should still be in G f by our definition of residual network. This
means u is also reachable from s (since v is reachable from s), which contradicts to u ∈ R .

6

L

s

a

b

c

d

e

t

2/3

1/3

4/4

0/10

2/2

1/1

1/1

5/5

0/1

2/2

5/5

Figure 6: An illustration of themax-flowmin-cut theorem. On each edge (u, v), the first number represents
fuv and the second number represents cuv . The vertices in L is circled, and the remaining vertices are in
R . The value of this flow is fsa + fsb + fsc = 7 and the value of the cut is cad + cbd + csc = 7. This flow has
the maximum value, and this cut has the minimum value.

Using the graph in Fig. 1 as an example, Fig. 6 illustrates the max-flow min-cut theorem.
The max-flow min-cut theorem also suggests that the minimum cut problem can be solved in polynomial
time.

Problem 9. Given a directed positively-weighted graph G = (V ,E , w), a source s and a sink t , find a cut
{L,R} (such that s ∈ L and t ∈ R) with the minimum value.

To solve this problem, all we need to do is to find a maximum flow (assuming w(u, v) is the capacity cuv

of (u, v)), construct the residual network G f , and then identify all vertices that are reachable from s in G f .

4 Edmonds-Karp Algorithm

We have mentioned in Sect. 2 that Ford-Fulkerson Algorithm’s running time depends on the numerical
values of the capacities, which makes it fails to run in polynomial time. Edmonds-Karp Algorithmmodifies
Ford-Fulkerson Algorithm as follows: at Line 2 of Algorithm 1, we use the s-t path p that contains a
minimum number of edges in the residual network G f . Notice that such a path can be found by a breadth-
first search starting from s.

7

In this section, we will show that Edmonds-Karp Algorithm runs in time O(m2n).

Definition 10. Given a residual network G f and an augmenting path p , an edge (u, v) ∈ p is critical if fuv

equals to the capacity of (u, v) in G f after the operation Augment(f , p).

By the natural of the algorithm, at least one edge becomes critical.

Proposition 11. Given a residual network G f and an augmenting path p , let f ′ be the flow after applying

Augment(f , p). If an edge (u, v) in G f become critical, then (u, v) is not in G f ′
, and (v,u) must be in G f ′

.

Proof. Firstly, either (u, v) or (v,u) must be in the original graph. If (u, v) is in the original graph, (u, v)

becoming critical implies fuv = cuv ; in this case we have (u, v) ∉ G f ′ and (v,u) ∈ G f ′ . If (v,u) is in the
original graph, (u, v) becoming critical implies fvu = 0; in this case we have (u, v) ∉G f ′ and (v,u) ∈G f ′ as
well.

Let δ f (v) be the distance from s to v in the residual network G f , where the distance is defined as the
minimum number of edges connecting from s to v (not the distance in the edge-weighted sense). The
following proposition says that the distance of each vertex is non-decreasing throughout the Edmonds-
Karp Algorithm.

Proposition 12. Given a residual network G f and an augmenting path p , let f ′ be the flow after applying

Augment(f , p). We have δ f (v) ≤ δ f ′(v) for each vertex v .

Proof. To show that the distance from s to any v cannot decrease, we show that, for any edge (v,u) that
appears in G f ′ but not in G f , we have δ f (v) > δ f (u). This implies the proposition: if the addition of (v,u)

connects a vertex v at a larger distance to a vertex u at a smaller distance, this addition does not help to
reduce the distance of u.
Notice that if an edge is not critical, this edge remains in the residual graph, and it will not cause any
additions of edges. The only case where (v,u) is added is when (u, v) ∈ p becomes critical, implied by
Proposition 11. However, Edmonds-Karp Algorithm finds p by a breadth-first search, so δ f (v) = δ f (u)+1.
Therefore, for any edge (v,u) added, we have δ f (v) > δ f (u).

Now, we are ready to evaluate the time complexity for Edmonds-Karp Algorithm.
Suppose (u, v) in G f becomes critical after Augment(f , p), and let f ′ be the flow after the augmentation.
By the breadth-first search natural, we have δ f (v) = δ f (u)+1. We know that (u, v) is no longer in G f ′

and (v,u) is in G f ′ by Proposition 11. The connection between u and v will remain unchanged until (v,u)

becomes critical at a future iteration. Suppose at a future iteration (v,u) becomes critical in G f ′′ . We have,

8

by the breadth-first search natural, δ f ′′(u) = δ f ′′(v)+1. Moreover,

δ f ′′(u) = δ f ′′(v)+1

≥ δ f (v)+1 (Proposition 12 implies the distance of v never decrease throughout the algorithm)

= δ f (u)+2. (since δ f (v) = δ f (u)+1)

Therefore, for any edge (u, v) in the original graph, if (u, v) or (v,u) becomes critical and this is not the first
time, the distance for one of u or v increases by 2. Since the distance of any vertex can increase by 2 for
at most n/2 times before becoming ∞, each edge or its reverse can only become critical for at most n +1

times. Since each while-loop iteration makes at least one edge critical, the total number of the while-loop
iterations is at most mn. Since each while-loop iteration requires O(m) time, the overall time complexity
for Edmonds-Karp Algorithm is O(m2n).

5 Maximum Matching and Minimum Vertex Cover in Bipartite Graphs

5.1 Maximum Matching

Definition 13. Given an undirected graph G = (V ,E), a matching is a set of edges M ⊆ E that do not share
any vertices in common: for any e1,e2 ∈ M , we have e1 ∩e2 =;.

Problem 14 (Maximum Matching in Bipartite Graphs). Given a bipartite graph G = (A,B ,E), find a maxi-
mum matching (a matching with maximum number of edges).

Figure 7 gives an example of a maximum matching in a bipartite graph.

Figure 7: A maximum matching (bold edges) in a bipartite graph.

The maximum matching problem in bipartite graphs can be solved by a reduction to the maximum flow
problem. Given a bipartite graph G = (A,B ,E), we construct a maximum flow instance (G ′ = (V ′,E ′), s, t ,c)

9

as follows. Create a vertex s and a vertex t . Then V ′ contains all the vertices in G , which is A ∪B , plus
the two vertices s and t . Connect s to all the vertices in A, and assign capacity 1 to each of those edges.
Connect all the vertices in B to t , and assign capacity 1 to each of those edges. For each edge {u, v} ∈ E in
G with u ∈ A and v ∈ B , create a (directed) edge (u, v) ∈ E ′ with capacity ∞ (or a very large number, say,
(|A|+ |B |)10). Figure 8 shows the maximum flow instance constructed for the graph in Fig. 7.

s t

1

1

1

1

1

1

1

1

1

1

1

1

∞
∞

∞
∞

∞

∞

∞

∞

∞

∞

Figure 8: The maximum flow instance constructed for the graph in Fig. 7.

Now, we run Ford-Fulkerson Algorithm, or Edmonds-Karp Algorithm, on the maximum flow instance we
have just constructed. Here, we exploit a property of the algorithm.

Theorem 15. If the capacities are all integers, Ford-Fulkerson Algorithm or Edmonds-Karp Algorithm always

returns an integral flow, i.e., a flow f such that fuv ∈Z≥0 for each edge (u, v).

Exercise 16. Prove Theorem 15.

Let f be the integral flow returned by the algorithm. It is then easy to see that, for each edge e , fe is either
0 or 1 in the graph we have constructed. For each {u, v} in the original graph G (with u ∈ A and v ∈ B), we
select it in the matching if and only if fuv = 1 in G ′. It is clear that we obtain a matching by doing this. For
each u ∈ A, since the amount of flow that goes into u is at most 1 (the only incoming edge for u is (s,u)),
the amount of flow that goes out from u is at most 1 by the conservation of flow. This means that, in the
original graph G , at most one edge that are incident to u is selected. Similarly, for each v ∈ B , since the
amount of flow that goes out from v is at most 1 (the only outgoing edge for v is (v, t)), the amount of flow
that goes into v is at most 1. This means that, in the original graph G , at most one edge that are incident
to v is selected. This proves that the edges we have selected form a matching.
On the other hand, for each valid matching M , we can construct a flow f with value v(f) = |M |. Indeed,
f is constructed as follows.

10

• For each u ∈ A, fsu = 1 if there exists v ∈ B such that {u, v} ∈ M , and fsu = 0 if otherwise.

• For each {u, v} ∈ E with u ∈ A and v ∈ B , fuv = 1 if {u, v} ∈ M , and fuv = 0 if otherwise.

• For each v ∈ B , fv t = 1 if there exists u ∈ A such that {u, v} ∈ M , and fv t = 0 if otherwise.

Figure 9 shows the flow corresponding to the matching in Fig. 7.

s t

1/1

1/1

1/1

1/1

1/1

1/1

0/1

1/1

1/1

1/1

1/1

0/1

1/∞
0/∞

0/∞
1/∞

0/∞

0/∞

1/∞

1/∞

0/∞

1/∞

Figure 9: The flow corresponding to the matching in Fig. 7.

We have shown that the flow f found by the algorithm is integral and corresponds to a matching M such
that v(f) = |M |. We have also proved that any matching M corresponds to a flow f with v(f) = |M |. Since
the algorithm finds a flow with the maximum value, the matching found is also maximum.

5.2 Minimum Vertex Cover and Maximum Independent Set

Given a bipartite graph G = (A,B ,E), suppose we have found an integral maximum flow f in the graph
G ′ (constructed in the previous sub-section). By viewing the capacities as the weights of the edges, the
minimum cut {L,R} also has value v(f), by the max-flow min-cut theorem. Let V1 = L ∩ A, V2 = L ∩B ,
V3 = R ∩ A and V4 = R ∩B . We have v(f) = c(L,R) = |V2| + |V3|, since the cut separates V2 from t and
separates V3 from s. In addition, there does not exist any edge (u, v) such that u ∈ V1 and v ∈ V4, for
otherwise the cut has value∞ (while we know the cut has value v(f) <∞). See Fig. 10 for some intuitions
of these observations.
This implies that V1∪V4 is an independent set in G . As a result, V2∪V3 is a vertex cover in G (see Exercise 4
in Lecture 11). Since every cut {L,R} defines the vertex cover V2 ∪V3 such that c(L,R) = |V2| + |V3|, and
the cut {L,R} is minimum, the vertex cover V2 ∪V3 also has the minimum size. As a result, V1 ∪V4 is
also a maximum independent set. Therefore, we can use Ford-Fulkerson Algorithm, or Edmonds-Karp
Algorithm, to find a minimum vertex cover, or a maximum independent set, in bipartite graphs, owing to
the max-flow min-cut theorem.

11

s t

the cut

V1 = L ∩A V2 = L ∩B

V3 = R ∩A V4 = R ∩B

L

R

A B

Figure 10: The cut separates V2 from t and separates V3 from s, so v(f) = c(L,R) = |V2|+ |V3|. There does
not exist any edge (u, v) such that u ∈V1 and v ∈V4

6 Strong Duality Theorem and Max-Flow Min-Cut

In this section, we will show that the max-flow min-cut theorem is essentially a special case of the strong
duality theorem we learned in the previous lecture.
We compute the dual program to the linear program (1) describing the maximum flow problem. Firstly,
we convert (1) to its standard form.

max
∑

u:(s,u)∈E fsu

subject to ∀u ∈V \ {s, t } :
∑

u:(v,u)∈E fvu −∑
w :(u,w)∈E fuw ≤ 0

∀u ∈V \ {s, t } : −∑
u:(v,u)∈E fvu +∑

w :(u,w)∈E fuw ≤ 0

∀(u, v) ∈ E : fuv ≤ cuv

∀(u, v) ∈ E : fuv ≥ 0

(4)

Then, we compute the dual program, with zu corresponding to the first set of constraints, z ′
u corresponding

to the second set of constraints, and yuv corresponding to the third set of constraints.

min
∑

(u,v)∈E cuv yuv

subject to ∀w ∈ N out (s) : zw − z ′
w + ysw ≥ 1

∀v ∈ N i n(t) : z ′
v − zv + yv t ≥ 0

∀(u, v) ∈ E ,u 6= s, v 6= t : z ′
u − zu + zv − z ′

v + yuv ≥ 0

∀u ∈V \ {s, t } : zu ≥ 0

∀(u, v) ∈ E : yuv ≥ 0

(5)

12

By letting ẑw = zw − z ′
w , this becomes

min
∑

(u,v)∈E cuv yuv

subject to ∀w ∈ N out (s) : ẑw + ysw ≥ 1

∀v ∈ N i n(t) : −ẑv + yv t ≥ 0

∀(u, v) ∈ E ,u 6= s, v 6= t : ẑv − ẑu + yuv ≥ 0

∀(u, v) ∈ E : yuv ≥ 0

(6)

Now, consider an arbitrary s-t path s → u1 →···→ uk → t . We have

ẑu1 + ysu1 ≥ 1

ẑu2 − ẑu1 + yu1u2 ≥ 0

ẑu3 − ẑu2 + yu2u3 ≥ 0
...

...
...

ẑuk − ẑuk−1 + yuk−1uk ≥ 0

−ẑuk + yuk t ≥ 0

Adding these together, we have

ysu1 + yuk t +
k−1∑
i=1

yui ui+1 ≥ 1.

On the other hand, the constraint matrix in the linear program (6) is totally unimodular. This implies that
there exists an optimal solution to this linear program such that yuv ∈ {0,1} for each (u, v) ∈ E . (Search
on the Internet for more information about these.) The inequality above implies that, on any s-t path p ,
there exists at least one edge (u, v) with yuv = 1. Therefore, those edges (u, v) such that yuv = 1 define a
cut. To be precise, let L be all the vertices reachable from s if we remove those (u, v) with yuv = 1, and let
R =V \ L. Since every s-t path has at least one edge removed, we have t ∉ L, so {L,R} is a valid cut.
Moreover, we have c(L,R) ≤OPT , whereOPT =∑

(u,v)∈E cuv yuv is the optimal objective value of the linear
program (6). To see this, let E(L,R) be the set of edges (u, v) with u ∈ L and v ∈ R , and let F be the set of
edges (u, v) with yuv = 1. It suffices to show that E(L,R) ⊆ F (since c(L,R) =∑

e∈E(L,R) ce ≤∑
e∈F ce =OPT).

To see this, if we have (u, v) ∈ E(L,R) with (u, v) ∉ F , then v is still reachable from s if we remove those
edges in F . This implies v ∈ L, which is a contradiction.
On the other hand, we have c(L′,R ′) ≥OPT for any cut {L′,R ′}. To see this, let ẑ ′

u = 1 if u ∈ L′, and ẑ ′
u = 0

if otherwise; let y ′
uv = 1 if (u, v) ∈ E(L′,R ′), and y ′

uv = 0 if otherwise. It is easy to verify that those ẑ ′
u and

y ′
uv give a valid solution to the linear program (6). In addition, the value of the cut c(L′,R ′) is precisely the

objective ∑
(u,v)∈E cuv y ′

uv , which is at least OPT . Therefore, we have c(L′,R ′) ≥OPT for any cut {L′,R ′}.
Putting those together, c(L,R) = OPT . The optimal solution to the linear program (6) precisely defines a
minimum cut.

13

	Lecture 12 – Network Flow
	Maximum Flow Problem
	Ford-Fulkerson Algorithm
	Max-Flow Min-Cut Theorem
	Edmonds-Karp Algorithm
	Maximum Matching and Minimum Vertex Cover in Bipartite Graphs
	Maximum Matching
	Minimum Vertex Cover and Maximum Independent Set

	Strong Duality Theorem and Max-Flow Min-Cut

