
AI2615 算法设计与分析 2020-2021春季学期

Lecture 11 – Linear Programming
2021年 5月 7日

Lecturer: 张驰豪 Scribe: 陶表帅

Suppose a factory can produce two kinds of products. The profit for producing one unit of the first kind of
products is 1, and the profit for producing one unit of the second kind of products is 6. Suppose a factory
has a limited amount of resources such that 1) the first kind of products cannot exceed 200 units, 2) the
second kind of products cannot exceed 300 units, and 3) the overall amount of products cannot exceed 400
units. Given these, you are to decide how many units of the first kind of products and how many units of
the second kind of products to produce respectively, so that the overall profit is maximized. This problem
can be formulated as follows:

max x1 +6x2

subject to x1 ≤ 200

x2 ≤ 300

x1 +x2 ≤ 400

x1, x2 ≥ 0

(1)

This is a typical linear program (LP). In a linear program, we have a linear objective that needs to be
maximized (or minimized), and we have a bundle of linear constraints.

x1

x2

O

D C

B

A

x1 + 6x2 = c

Figure 1: The feasible region for linear program (1).

The shadow area in Fig. 1 illustrates the feasible region for this linear program. The two axises correspond

1

to the constraints x1 ≥ 0 and x2 ≥ 0 respectively. Line AB corresponds to the constraint x1 ≤ 200, Line C D

corresponds to the constraint x2 ≤ 300, and Line BC corresponds to the constraint x1 + x2 ≤ 400. If we
write c = x1 +6x2, this corresponds to the dashed line with gradient −1

6 . Our objective is to maximize c

while making sure (x1, x2) is still in the feasible region. In Fig. 1, we would like to shift the line upward
by as much as possible, while making sure this line still intersects the shadow area. This will shift the line
to a position that intersects the point C , with coordinate (100,300). Therefore, the optimal cost to linear
program (1) is 1900, with x1 = 100 and x2 = 300.
Let us see another linear program example with three variables.

max x1 +6x2 +13x3

subject to x1 ≤ 200

x2 ≤ 300

x1 +x2 +x3 ≤ 400

x2 +3x3 ≤ 600

x1, x2, x3 ≥ 0

(2)

The feasible region for this linear program is the polytope shown in Fig. 2.

O

A
B

C

D

EF

G

x3

x1

x2

Figure 2: The feasible region for linear program (2).

If we write c = x1 +6x2 +13x3 and try to maximize c , we will need to shift the plane c = x1 +6x2 +13x3

upward by as much as possible, while making sure the plane still intersects the polytope.

2

In general, we can write a linear program by

max c>x

subject to Ax ≤ b

x ≥ 0

(3)

where c,x ∈Rn , b ∈Rm , and A is an m ×n matrix.

1 Simplex Method

We have seen that the optimal solution for a linear program can be obtained by a line shifting (for two
variables), a plane shifting (for three variables), or a hyper-plane shifting (for more than three variables).
This method is based on geometric observations, and it is unclear how it can be described by an algorithm,
especially when the number of variables becomes large. In this section, we will introduce the simplex

method, which is an algorithm, or a class of algorithms, that is closely related to the above-mentioned
geometric observations. This method is most commonly used in practice when solving a linear program.
Before introducing the simple method, we will first state some geometrically intuitive observations with-
out proofs. First of all, the optimal solution (x1, . . . , xn) always corresponds to a vertex of the polytope
describing the feasible region. In particular, it will not correspond to any interior point. For example, in
Fig. 1, the optimal solution corresponds to vertex C ; in Fig. 2, the optimal solution corresponds to vertex
D (verify this!). Intuitively, if we try to shift the hyper-plane corresponding to the objective upward by as
much as possible, we will reach a position where the hyper-plane just barely intersects the polytope by a
single vertex. On the other hand, if an interior point is in the intersection between the hyper-plane and
the polytope, we can still shift the hyper-plane upward, and this interior point cannot correspond to an
optimal solution.
Secondly, if we consider the function that maps a point in the polytope to the objective value of the linear
program, this function has only one local maximum, which is the global maximum (which is the cost of
the optimal solution). This is because both the feasible region and the objective expression are convex.
The simple method makes use of these two observations. It starts from the origin, and it iteratively moves
to an adjacent vertexwith a higher cost, until it reaches a vertexwith a cost higher than any of its neighbors
(i.e., a local optimum). The two observations imply the correctness of this method: the optimal solution is
always on a vertex, and the local optimum is just the global optimum. In the example in Fig. 1, the simplex
method may go along the path O → A → B →C ; in the example in Fig. 2, the simplex method may go along
the path O →C → E → B → D .
Before going further, let us first clarify what do we mean by saying two vertices are adjacent. This is clear
in Fig. 1 and Fig. 2 with only two or three variables. When we have n variables, the polytope is in Rn . A
vertex is the intersection point of n hyper-planes corresponding to a set of n constraints. If two vertices

3

are adjacent, we mean that the line passing through these two vertices are the intersection of n−1 hyper-
planes corresponding to a set of n −1 constraints. In other words, if two vertices are adjacent, there are
n −1 common constraints between the n constraints defining one vertex and the n constraints defining
the other.
One natural problem arises. When we are deciding the next vertex to move, there may be more than one
adjacent vertex that has a higher cost. Which vertex are we going to? Since the number of vertices are
finite, regardless of what we choose at each step, we will always end up to the vertex corresponding to
optimal solution. Therefore, the choices here do not affect the correctness of the method. However, it
affects the running time! Especially, we have exponentially many vertices for a polytope in Rn : since n

constraints define a vertex, we can have up to
(m

n

)
vertices if we have m constraints in total.

In fact, it is a central open problem if there is an implementation of the simplex method that always runs
in polynomial time. We may have some natural choices when deciding the next vertex to move to in the
simplex method. For example, we can choose an adjacent vertex with the highest cost, or, we can choose
an adjacent vertex randomly. However, for each of those implementations of the simplex method that
researchers have thought about, there are examples that makes the implementation runs in exponential
time.
Fortunately, those examples are rare: in practice, the simplex method is very efficient. Theoretical com-
puter scientists have been spending efforts on explaining this phenomenon. There is an entire field called
smoothed analysis, introduced by Teng & Spielman, that deals with this. Most notably, Teng & Spielman
showed that, if we add a random Gaussian noise to either A or b in (3), simplex method runs in polynomial
time in the average case.
We also remark that, although the simplex method does not provably run in polynomial time (yet), there
exist other methods for solving linear programs that provably run in polynomial time. We will discuss
this more in the last section of this lecture. Therefore, whenever a problem can be formulated by a linear
program, it is polynomial time solvable.

2 Vertex Cover

Definition 1. Given an undirected graph G = (V ,E), a subset of vertices S ⊆V is a vertex cover if S ∩e 6= ;
for any edge e = {i , j } ∈ E .

In words, a vertex cover S “covers” every edge by including one or both endpoints of it.

Problem 2 ((Minimum) Vertex Cover). Given an undirected graph G = (V ,E), find a vertex cover with
minimum number of vertices.

Exercise 3. Show that the vertex cover problem can be viewed as a special case of the set cover problem.

4

Exercise 4. Prove that V \ S is an independent set of G = (V ,E) if S is a vertex cover.

For each vertex v ∈ V , we use xv ∈ {0,1} to described if v is selected in the vertex cover. That is, xv = 0 if
v ∉V , and xv = 1 if v ∈V . The vertex cover problem can be formulated as follows.

min
∑

v∈V xv

subject to ∀{i , j } ∈ E : xi +x j ≥ 1

∀v ∈V : xv ∈ {0,1}

(4)

This is an integer program (IP). The difference between an integer program and a linear program is that
each variable in an integer program is restricted to take integer values, typically from {0,1}. This difference
is significant. We have see that a linear program can be solved in polynomial time, while solving an integer
program is NP-hard. In fact, vertex cover is a well-known NP-hard problem.
In this section, we will see a common technique for designing an approximation algorithm: linear relax-
ation. The approximation algorithms we have seen in the previous lectures are all greedy algorithms. The
success of a greedy-based approximation algorithm heavily relies on the structures of the problems. Linear
relaxation, on the other hand, is a more generic technique.
Typically, to apply this technique, we first formulate the problem by an integer program (like (4) for vertex
cover), and then relax the constraint xv ∈ {0,1} to 0 ≤ xv ≤ 1 to obtain a linear program. The integer
program (4) is then relaxed to the following linear program.

min
∑

v∈V xv

subject to ∀{i , j } ∈ E : xi +x j ≥ 1

∀v ∈V : 0 ≤ xv ≤ 1

(5)

Notice that the linear program (5) can be easily convert to the standard form in (3). The objective can be
rewrite to a maximization by max

∑
v∈V (−xv) (the solution maximizing ∑

v∈V (−xv) is exactly the solution
minimizing ∑

v∈V xv . For the constraint xi +x j ≥ 1 with the opposite direction of inequality, we can write
it as −xi −x j ≤−1.
Let OPT (I P) be the optimal cost for the integer program (4) and OPT (LP) be the optimal cost for the
linear program (5). Our objective is to find a solution to the integer program (4) with cost not far from
OPT (I P).
We first have the following simple observation.

Proposition 5. OPT (I P) ≥OPT (LP).

Proof. Notice that the feasible region for (4) is a subset of the feasible region for (5). The optimal solution
over a larger feasible region is clearly better.

For the next step, we solve the linear program (5) and obtain the optimal solution {x∗
v } with cost OPT (LP),

and we need to use this to find a solution for the vertex cover problem that gives a reasonably close

5

approximation to OPT (I P). If x∗
v is an integer, it is either 0 or 1, which is also a valid value for xv in the

integer program (4). If x∗
v is a fractional value in the open interval (0,1), a natural way to convert it to an

integer value is by rounding. That is, we assign xv = 1 if and only if x∗
v ≥ 1

2 . Putting together, we have the
following algorithm for vertex cover:

1. Formulate the problem to the integer program (4) and relax it to the linear program (5);

2. Solve the linear program (5) and obtain {x∗
v };

3. Return S = {v | x∗
v ≥ 1

2 }.

The following two lemmas show that this is a 2-approximation algorithm.

Lemma 6. S returned by the algorithm is a vertex cover.

Proof. For any edge {i , j } ∈ E , since {x∗
v } is a valid solution to the linear program (5), we have x∗

i + x∗
j ≥ 1.

This implies either x∗
i ≥ 1

2 or x∗
j ≥ 1

2 , or both are true. By our algorithm, S contains at least one of i and
j .

Lemma 7. |S| ≤ 2 ·OPT (I P).

Proof. Since we have OPT (I P) ≥ OPT (LP) by Proposition 5, it suffices to prove |S| ≤ 2 ·OPT (LP). We
have

OPT (LP) = ∑
v∈V

x∗
v = ∑

v :x∗
v < 1

2

x∗
v + ∑

v :x∗
v ≥ 1

2

x∗
v ≥ ∑

v :x∗
v < 1

2

0+ ∑
v :x∗

v ≥ 1
2

1

2
= 1

2
|S|,

which implies |S| ≤ 2 ·OPT (LP).

This approximation algorithm contains a typical idea behind general approximation algorithm design. For
a minimization problem, when we want to prove that the value of the solution output by an algorithm is at
most α times the optimum, it is usually hard to directly compare the value to the optimum, as finding the
optimum is normally NP-hard. Instead, we find a lower bound to the optimum, and show that the value of
the solution found by the algorithm is at most α times this lower bound. In our example here, the lower
bound is OPT (LT), and we show that the value of the solution we find is at most 2 times OPT (LT).

3 LP Duality Theorem

We have seen that the optimal solution for the linear program (1) is (x1, x2) = (100,300), with cost 1900.
We have used both an geometric argument and an argument based on simplex method to show that this
is optimal. Can we prove it by some simple observations from the linear program itself? Let us denote
the three constraints x1 ≤ 200, x2 ≤ 300 and x1 + x2 ≤ 400 by (i), (ii) and (iii) respectively. If we add (i) to
6 times (ii), we obtain x1 +6x2 ≤ 200+6×300 = 2000. This indicates that the optimal solution has cost at
most 2000. Can we find a tighter upper bound for the cost of the optimal solution by a linear combination

6

of the constraints like what we have done just now? Yes, we can. In fact, if we multiple (ii) by 5 and add
(iii), we obtain x1 +6x2 ≤ 5×300+400 = 1900. Since we have found a solution (x1, x2) = (100,300) with
cost 1900, this proves that the solution is optimal.
Let us try this on the linear program (2). Suppose wemultiple the first constraint x1 ≤ 200 by y1, the second
constraint x2 ≤ 300 by y2, the third constraint x1+x2+x3 ≤ 400 by y3, and the last constraint x2+3x3 ≤ 600

by y4. We ensure that y1, y2, y3, y4 ≥ 0, and we obtain

(y1 + y3)x1 + (y2 + y3 + y4)x2 + (y3 +3y4)x3 ≤ 200y1 +300y2 +400y3 +600y4.

To find an upper bound to the objective x1 +6x2 +13x3, we need to make sure that

x1 +6x2 +13x3 ≤ (y1 + y3)x1 + (y2 + y3 + y4)x2 + (y3 +3y4)x3

always holds. Since x1, x2, x3 ≥ 0, the only way to make this always true is to make sure, for each xi

(i = 1,2,3), the coefficient of xi on the right-hand side of the inequality is at least as large as the coefficient
of xi on the left-hand side. Therefore, we have

y1 + y3 ≥ 1

y2 + y3 + y4 ≥ 6

y3 +3y4 ≥ 13

By ensuring these, 200y1+300y2+400y3+600y4 becomes an upper bound to the objective x1+6x2+13x3

of the linear program (2). Now we need to find an upper bound that is as tight as possible. In other words,
we want to minimize 200y1 +300y2 +400y3 +600y4. Putting together, we have another linear program:

min 200y1 +300y2 +400y3 +600y4

subject to y1 + y3 ≤ 1

y2 + y3 + y4 ≤ 6

y3 +3y4 ≤ 13

y1, y2, y3, y4 ≥ 0

(6)

This linear program is called the dual of the linear program (2). Correspondingly, we call (2) the primal.
Similarly, the dual of the linear program (1) is

min 200y1 +300y2 +400y3

subject to y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

(7)

For the general form linear program (3), its dual is

min b>y

subject to y>A ≥ c>

y ≥ 0

(8)

7

You may have learned the Lagrange multiplier for a convex program in another course. A linear program
is a special case of a convex program. In fact, for a linear program, if we write the objective and the
constraints by the Lagrange multiplier method, this is exactly the dual.
From our motivation that the dual program finds an upper bound for the objective of the primal program,
the cost of a valid solution in the dual program is always weakly larger than the cost of a valid solution in
the primal program. This is exactly the weak duality theorem.

Theorem 8 (Weak Duality Theorem). If x̂ is a feasible solution for (3) and ŷ is a feasible solution for (8), we

have c>x̂ ≤ b>ŷ.

primal feasible primal OPT dual OPT dual feasible

Figure 3: The weak duality theorem

In fact, if we solve the dual program (8), its optimal cost is a tight upper bound for the primal program (3).
This is the strong duality theorem.

Theorem 9 (Strong Duality Theorem). Let x∗ be the optimal solution for (3) and y∗ be the optimal solution

for (8). We have c>x∗ = b>y∗.

primal feasible dual feasibleprimal OPT = dual OPT

Figure 4: The strong duality theorem

3.1 Proof of Strong Duality Theorem

To prove the strong duality theorem, we will need Farkas Lemma.

Theorem 10 (Farkas Lemma). Let A ∈ Rm×n be a m ×n real matrix and b ∈ Rm be a m-dimensional real

vector. Exactly one of the following is true:

1. there exists x ∈Rn with x ≥ 0 such that Ax = b;

2. there exists y ∈Rm such that A>y ≥ 0 and b>y < 0.

We will not give a formal proof for Farkas Lemma. Instead, we will give a geometric intuition.
Let us assume m = n = 2. Write A = [c1 c2], where c1,c2 ∈ R2 are the two columns of the matrix A. The
subset {Ax | x ≥ 0} ⊆ R2 is exactly the cone inscribed by the two vectors c1,c2, shown by the grey area in
Fig. 5.
Suppose b is outside this grey area. We know that 1 of Farkas Lemma is false. To show that 2 is true,
notice that we can find a plane (or a line in the case of R2) that “separates” the grey area and the vector b,

8

such that the grey area and the vector b are on the opposite side of the plane. We choose a normal vector
y of this plane such that y is on the same side of c1,c2, and is on the opposite side of b. This vector then
satisfies A>y ≥ 0 (since c>1 y ≥ 0 and c>2 y ≥ 0) and b>y < 0, so 2 in Farkas Lemma is true. See Fig. 5 for an
illustration.

c2

c1

b

separating plane

y

Figure 5: Geometric intuition behind Farkas Lemma.

Suppose b is inside the grey area. We know that 1 of Farkas Lemma is true. To see that 2 is false, 2
essentially says that we can find a separating plane that leaves b and the grey area on the opposite sides.
This is clearly impossible if b is inside the grey area.
To prove the strong duality theorem, we will need the following corollary to Farkas Lemma.

Corollary 11 (A Corollary to Farkas Lemma). Let A ∈ Rm×n be a m ×n real matrix and b ∈ Rm be a m-

dimensional real vector. Exactly one of the following is true:

1. there exists x ∈Rn with x ≥ 0 such that Ax ≥ b;

2. there exists y ∈Rn with y ≤ 0 such that A>y ≥ 0 and b>y < 0.

Proof. Let A′ be a m × (n +m) matrix defined by A′ = [A − I], where I is the m ×m identity matrix.
We apply Farkas Lemma on A′ and b. Let P1 and P2 be statement 1 and 2 in Farkas Lemma for A′ and b

respectively. Let Q1 and Q2 be statement 1 and 2 in this corollary for A and b respectively. It suffices to
show that P1 is equivalent to Q1 and P2 is equivalent to Q2. Then, exactly one of P1 and P2 being true
implies exactly one of Q1 and Q2 being true.

P1 says that there exists x′ ∈Rn+m with x′ ≥ 0 such that A′x′ = b. By writing x′ =
 x

x̄

, this breaks down

9

to

[A − I]

 x

x̄

= b,

which is equivalent to Ax = b+ x̄, which is just equivalent to Ax ≥ b since x̄ is a positive vector. We have
proved P1 is equivalent to Q1.
P2 says that there exists y ∈Rm such that A′>y ≥ 0 and b>y < 0, which break down to A>

−I

y ≥ 0 and b>y < 0,

which further break down to A>y ≥ 0, −y ≥ 0, and b>y < 0, which is just Q2.

There is also a geometric intuition behind this corollary. Suppose m = n = 2 and let A = [c1 c2] again.
Like before, Ax with x ≥ 0 describes the cone inscribed by vectors c1 and c2. On the other hand, all the
vectors that are (coordinate-wise) weakly larger than b is the rectangular area that is to the upper-right of
b. In Fig. 6, the dark grey area is the cone inscribed by vectors c1 and c2, and the light grey area is the set
of points that are coordinate-wise weakly larger than b.

c2

c1

b

when 1 is true

b

c1

c2

y
separating plane

when 2 is true

Figure 6: Geometric intuition behind the corollary of Farkas Lemma.

If 1 in the corollary is true, the two areas intersect. This means that we can have a point with coordinate
Ax that is coordinate-wise weakly larger than b. See the figure on the left-hand side of Fig. 6.
If 1 in the corollary is false, the two areas do not intersect. This corresponds to the figure on the right-hand
side of Fig. 6. We are able to find a separating plane that separates those two areas. We choose the normal
vector y of this plane such that y is on the same side of c1,c2 and on the opposite side of b. In particular,
y must be in the third quadrant (i.e., y ≤ 0). For otherwise, the separating plane will pass through the first

10

quadrant, which will eventually intersect the light grey area. In general Rn , if y ≤ 0 is not true, we can find
a vector z with z < 0 that is on the opposite side of y. This means −z is on the same side with y, which is on
the same side with c1,c2. Since −z > 0, we can rescale −z by a very large positive scalar α so that −αz > b

(i.e., −αz is in the light grey area). We have found a point in the light grey area that is on the same side of
c1 and c2, so the plane fails to separate the two areas. Thus, we must have y ≤ 0.
Now we are ready to prove the strong duality theorem.

Proof of Theorem 9. The weak duality theorem indicates c>x ≤ b>y∗ for any x that is feasible for (3). Sup-
pose the strong duality does not hold. We must have c>x < b>y∗ for any x that is feasible for (3). In other
words, there does not exist x ≥ 0 satisfying both Ax ≤ b and c>x ≥ b>y∗. To write this in the matrix form,
we have that the set of constraints −A

c>

x ≥
 −b

b>y∗

 and x ≥ 0

is infeasible.

By applying the corollary of Farkas Lemma on matrix

 −A

c>

 and vector

 −b

b>y∗

, since 1 in the corol-

lary is false, 2 must be true, and there must exist y ∈Rm and w ∈R such that

[−A> c
] y

w

≥ 0,
[−b> b>y∗

] y

w

< 0 and

 y

w

≤ 0.

After matrix multiplications, we have 
−A>y+wc ≥ 0

−b>y+wb>y∗ < 0

y ≤ 0

w ≤ 0

. (9)

Now we discuss two cases: w = 0 and w < 0.
If w = 0, we have A>(−y) ≥ 0, b>(−y) < 0 and−y ≥ 0. Consider z = y∗−y. We have A>z = A>y∗+A>(−y) ≥
c. Therefore, z is a feasible solution to the dual program. In addition, we have b>z = b>y∗+b>(−y) < b>y∗.
This contradicts to that y∗ is dual optimal.
Now suppose w < 0. By dividing w on both side of the inequalities in (9), we have,

−A> (y
w

)+c ≤ 0

−b> (y
w

)+b>y∗ > 0
y
w ≥ 0

.

This implies ŷ := y
w is a feasible solution to the dual program (8) such that b>ŷ < b>y∗, contradicting to

that y∗ is optimal.

11

4 Zero-Sum Games and Minimax Theorem

In this section, we show that the strong duality theorem can be used to prove minimax theorem, a central
theorem in game theory that is even considered as the starting point of game theory.
Consider the rock-scissors-paper game between two players, the row player and the column player. Each
player can play one of the threemoves: R (rock), S (scissors), or P (paper). Two players play simultaneously.
The payoff matrix of this game is given in Table 1, where each entry corresponds to the gain for the row
player, which is also the loss of the column player. For example, if the row player plays R and the column
player plays S, the row player receives payoff 1, and the column player receives payoff −1 (the column
player’s loss is 1). In this game, the sum of all the players payoffs always equals to 0. Games satisfy this
property are called zero-sum games.

Column
R S P

Row
R
S
P

0 1 -1
-1 0 1
1 -1 0

Table 1: The payoff matrix for the rock-scissors-paper game.

A strategy of a player is a probability distribution over {R,S,P}. If the strategy specifies that one of the
three moves is played with probability 1, this strategy is called a pure strategy. Otherwise, it is a mixed

strategy. Fix one player’s strategy, the best response for the other player is a strategy that maximizes this
player’s payoff. For example, if the column player plays the strategy (1,0,0) (i.e., the column player plays
R), the best response for the row player is (0,0,1) (i.e., the row player plays P), which gives the row player
payoff 1. If the column player plays (1

2 , 1
4 , 1

4), the best response for the row player is again (0,0,1). To see
this, the expected payoff for the row player for playing R is

0× 1

2
+1× 1

4
+ (−1)× 1

4
= 0,

the expected payoff for the row player for playing S is

(−1)× 1

2
+0× 1

4
+1× 1

4
=−1

4
,

and the expected payoff for the row player for playing P is

1× 1

2
+ (−1)× 1

4
+0× 1

4
= 1

4
.

Clearly, playing P gives the row player best payoff. In addition, since playing P gives the row player strictly
higher payoff than playing R or playing S, playing any mixed strategy can only reduce the payoff of the

12

row player. In general, there may be more than one best response, and there is always a best response
that only uses pure strategy. For example, if the column player plays (1

3 , 1
3 , 1

3), then any strategy of the row
player is a best response, which always gives the row player payoff 0 (check this!).
In general, suppose each of the two players can play one of the n moves. Let x = (x1, . . . , xn) be the strategy
of the row player and y = (y1, . . . , yn) be the strategy of the column player. Let G ∈ Rn×n be the payoff
matrix, where G(i , j) is the payoff for the row player if the row player plays i and the column player plays
j . The expected payoff for the row player is

∑
1≤i , j≤n

G(i , j)xi y j .

Suppose the row player chooses a strategy first and assuming the column player always plays a best re-
sponse. Given that the column player always plays a best response, the row player would like to choose
a strategy that maximizes his own expected payoff. For the rock-scissors-paper game, the row player will
play (1

3 , 1
3 , 1

3) and receive an expected payoff of 0. If the row player mixes the three moves unevenly, it is
easy to see that he will receive a negative expected payoff when the column player plays a best response.
On the other hand, if the column player chooses a strategy first and assuming the row player always plays
a best response, the column player will also play (1

3 , 1
3 , 1

3) and receive an expected payoff of 0. In the rock-
scissors-paper game, it does not matter which player chooses a strategy first, the expected payoff when
two players act optimally is always the same.
You may believe that this property is true only for the rock-scissors-paper game because this game is
highly symmetric. In fact, you may believe that the player choosing a strategy first has a disadvantage, as
the other player can always play against this strategy in a best way. However, the minimax theorem says
that this property is indeed always true for any zero-sum game.
To formally state this theorem, if the row player chooses a strategy first, he will choose x such that
miny

∑
1≤i , j≤n G(i , j)xi y j is maximized. In particular, for fixed x, the column player’s best response is

a strategy y that minimizes the row player’s payoff ∑
1≤i , j≤n G(i , j)xi y j . Thus, the row player’s payoff for

playing strategy x is then miny
∑

1≤i , j≤n G(i , j)xi y j , and he wants to maximizes this value. Therefore, the
row player’s payoff for the optimal choice of strategy, given that the column player always plays a best
response, is

max
x

min
y

∑
1≤i , j≤n

G(i , j)xi y j .

Similarly, if the column player chooses a strategy first, his payoff for the optimal choice of strategy, given
that the row player always plays a best response, is

min
y

max
x

∑
1≤i , j≤n

G(i , j)xi y j .

The minimax theorem states that these two values are equal.

13

Theorem 12 (Minimax Theorem). Given a zero-sum game with payoff matrix G ∈Rn×n , we have

max
x

min
y

∑
1≤i , j≤n

G(i , j)xi y j = min
y

max
x

∑
1≤i , j≤n

G(i , j)xi y j .

Let us see another example. Suppose each of the row player and the column player can play two moves,
and the payoff matrix is given by

G =
 3 −1

−2 1

 .

Suppose the row player chooses a strategy (x1, x2) first. The expected payoff for the column player for play-
ing the first move is 3x1−2x2, and it is −x1+x2 for playing the second move. Fix the row player’s strategy
(x1, x2), the expected payoff for the column player for playing a best response is min{3x1 −2x2,−x1 +x2}.
The expected payoff for the row player for an optimally chosen strategy is

max
(x1,x2)

min{3x1 −2x2,−x1 +2x2}.

To solve x1 and x2, we can formulate it as a linear program:

max z

subject to 3x1 −2x2 ≥ z

−x1 +x2 ≥ z

x1 +x2 = 1

x1, x2 ≥ 0

(10)

Suppose the column player chooses a strategy (y1, y2) first. By the same analysis, when the column player
plays an optimal strategy and assuming the row player always plays a best response, the expected payoff
for the column player is

min
(y1,y2)

max{3y1 − y2,−2y1 + y2},

and (y1, y2) can be solved by the linear program

min w

subject to 3y1 − y2 ≤ w

−2y1 + y2 ≤ w

y1 + y2 = 1

y1, y2 ≥ 0

(11)

By writing the two linear programs to the standard form, we can see that (11) is the dual of (10). By
the strong duality theorem, the two linear programs have the same optimum. This proves the minimax
theorem by an example. Notice that the general case can be proved similarly by writing down the two
linear programs and showing one is the dual of the other.

14

5 Polynomial Time Algorithms to Solve Linear Programs

We have mentioned that the simplex method can solve a linear program quickly in practice, but there is
currently no guarantee that it can be done in polynomial time in the worst case. In this section, we will
describe, only in high level ideas, two other algorithms for solving a linear program.

5.1 Ellipsoid Method

Firstly, notice that, if we are able to decide whether the feasible region of a linear program is a non-empty
set, we can solve the linear program by a binary search on the objective value. The ellipsoid method is used
to decide if the feasible region is non-empty.
It starts by finding a large ellipsoid in Rn that is guaranteed to enclose the feasible region (if non-empty).
Then it finds a point inside this ellipsoid, and see if this point is inside the feasible region. If it is inside
the feasible region, we are done. Otherwise, we can find a constraint which this point fails to satisfy. This
constraint corresponds to a hyper-plane in Rn that intersect the ellipsoid, and this hyper-plane separates
the point and the feasible region (see the dashed line in Fig. 7). We know that the feasible region is then
in the half of the ellipsoid separated by the hyper-plane (the grey area in Fig. 7). In the next iteration,
the ellipsoid method finds a smaller ellipsoid that enclose the grey area. The ellipsoid method iteratively
“shrinks” the size of the ellipsoid and eventually locates the feasible region.

feasible
region

Figure 7: Ellipsoid method.

In fact, the ellipsoid method works even when there are exponentially many constraints, as long as there
is a separation oracle that, given a point x,

• output that x is in the feasible region if so, or

• find a constraint that x violates if x is not in the feasible region.

However, the ellipsoid method does not run in strong polynomial time. Its running time is polynomial in
terms of n (the number of variables) and the numerical values in the linear program.

15

5.2 Interior Point Method

The interior point method, on the other hand, runs in strong polynomial time. However, it requires that the
number of constraints m is bounded by a polynomial of the number of variables n.
Similar to the simplex method, the interior point method move a step in each iteration. Unlike the simplex
method, the interior pointmethod alwaysmoves inside the feasible region, instead of on the boundary, until
it reaches the vertex representing the optimal solution. The closer the algorithm moves to the boundary,
there is a larger “force” that repels it from the boundary.

Figure 8: Interior point method.

16

	Lecture 11 – Linear Programming
	Simplex Method
	Vertex Cover
	LP Duality Theorem
	Proof of Strong Duality Theorem

	Zero-Sum Games and Minimax Theorem
	Polynomial Time Algorithms to Solve Linear Programs
	Ellipsoid Method
	Interior Point Method

