
AI2615 算法设计与分析 2020-2021春季学期

Lecture 10 – Dynamic Programming 3
2021年 4月 30日

Lecturer: 张驰豪 Scribe: 陶表帅

We will continue studying dynamic programming in this lecture. In particular, we will see some advanced
techniques for reducing the number of sub-problems/states and for designing sub-problems such that com-
puting recurrence relations can be done faster.

1 Non-attacking Kings on Chessboard

In a single round of a chess game, a king can move in one of the eight directions (two horizontal directions,
two vertical directions and four diagonal directions) by one step. The labels “X” in Fig. 1 shows a king’s
movement in one round. Given a m×n chessboard and multiple kings placed on it, we say that the kings
are non-attacking if no king can move to the position of any other king in one round.

king

X

X

X

X

X

X

X

X

Figure 1: A king’s feasible movement in one round.

Problem 1. Given a m ×n chessboard with n ≤ m, how many different ways are there to place non-
attacking kings?

This problem can be solved by a brute-force search: just check for all the possible 2mn kings placements,
and see how many of them are non-attacking. This requires time complexity O(2mn). We will present a
dynamic programming algorithm that solves this problem with time complexity O(4n ·m).

1

A natural idea is to define F (i) for each i = 1, . . . ,m such that F (i) is the number of valid placements if
restricted to the first i rows of the board. However, it is hard to find a recurrence relation if we define
the sub-problems in this way. This is because the placement of the kings on the (i −1)-th row affects the
validity of the placement on the i -th row. For example, if a king is placed at (i − 1, j) on the (i − 1)-th
row, we know that the three positions (i , j −1), (i , j), (i , j +1) on the i -th row are not allowed to place any
kings. Therefore, to figure out how F (i) is related to F (i −1), . . . ,F (1), we need the extra information on
how kings on the (i −1)-th row are placed. This motivates us to define the sub-problem in the following
way.
We denote the set {1, . . . ,n} by [n]. For each i = 1, . . . ,m and each S ⊆ [n], let F (i ,S) be the number of valid
placements in the first i rows, given that the placement on the i -th row is according to S (i.e., a king is
placed at (i , j) for each j ∈ S). Given S ⊆ [n], we say that S is non-contiguous if there is no pair of two
adjacent numbers in S. Obviously, if S describes the placement of the kings on a row, S is required to be
non-contiguous. If S and S′ describe the placements of the kings in two adjacent rows, we require that
S∩S′ =; (no pair of two kings can be vertically adjacent) and that S∪S′ is non-contiguous (no pair of two
kings can be horizontally or diagonally adjacent). We then have the following natural recurrence relation:

F (i ,S) = ∑
S′:S′⊆[n],S′∩S=;,S′∪S is non-contiguous

F (i −1,S′).

For initial condition, we have

F (1,S) =
 1 if S is non-contiguous

0 otherwise
.

The output we need is ∑
S:S⊆[n],S is non-contiguous

F (n,S).

This finishes all the essential details for the dynamic programming algorithm.
There are 2n×m sub-problems/states of this dynamic programming algorithm. The recurrence relation can
be computed in O(2n) time, as there are less than 2n possible subsets for S′. The overall time complexity
is therefore O(4n ·m).

Exercise 2. The one-round movements for a “knight” and a “queen” are shown in Fig. 2. Can we use
the similar dynamic programming technique to solve Problem 1 if we are placing knights? What about
queens?

2 Largest Number in Every k Consecutive Numbers

In this section, we consider the problem of finding the largest number in every k consecutive numbers in
an array.

2

X

X

X

X

X

X

X

X

X

XX

X

X

XX

X

X

XX

X

XXXX X

X X

X

X

X X

X

X

X X

X

Figure 2: The one-round feasible movements for a knight (left-hand side) and a queen (right-hand side).

Problem 3. Let a[1 · · ·n] be an array of numbers and k be an integer less than n. Let b[1 · · ·n] be the array
defined by b[i] = max

j :max{i−k+1,1}≤ j≤i
{a j }. Compute b.

The naïve way of computing b require O(nk) time. We will see a clever dynamic programming algorithm
that runs in O(n) time. Below, an interval refers to a sub-array consisting of k consecutive numbers, or a
sub-array consisting of less than k consecutive numbers that starts at a[1]. By saying the i -th interval, we
mean the interval ended at a[i], i.e., the interval from a[max{i −k +1,1}] to a[i]. Problem 3 then lets us
find the largest number in every interval.
The technical heart of the algorithm is to maintain an array C which stores the indices of the numbers
each of who has a chance to become the largest number in an interval. To be more specific, the algorithm
will iteratively calculate b[1],b[2], . . . ,b[n]; after calculating b[i], C stores the indices of the numbers in
the i -th interval such that each of those numbers can potentially be the largest number in the i ′-th interval
for some i ′ > i .

Example 4. Let a = {3,5,7,12,3,5,4,5,6,7,5,10,8} and k = 4. Suppose we have just calculated b[7]. That
is, we have identified that the largest number in the 7-th interval {12,3,5,4} is 12. We have C = {6,7} at
current stage. Notice that the fourth number 12, as well as any number before the fourth number, can no
longer be the largest number in any later intervals, as any later interval will not even contain any of them.
Therefore, we only need to consider a[5] = 3, a[6] = 5, and a[7] = 4. Next, a[5] = 3 cannot be the largest
number in any later intervals, because any later intervals containing a[5] will also contain a[6], and we
have a[6] > a[5], which implies a[5] = 3 will never be the largest number. Finally, a[6] = 5 and a[7] = 4

both have a potential to become the largest number. In particular, if a[8] and a[9] are both less than a[6],
then a[6] is the largest number in the 9-th interval. If a[8], a[9] and a[10] are all less than a[7], then a[7]

is the largest number in the 10-th interval. Therefore, C stores the indices 6 and 7. We remark that we do
not see a[i +1], . . . , a[n] by the time we are updating C at the i -th iteration of the algorithm. By saying a
number “has a potential to become the largest number in a later interval”, we mean that there exist certain
a[i +1], . . . , a[n] such that this number is the largest number in one (or more) of the later intervals.

3

We have the following observations.

Proposition 5. By the end of the i -th iteration, if there exist two indices j and j ′ such that a[j] < a[j ′] and

j < j ′ ≤ i , we must have j ∉ C . On the other hand, we must have j ∈ C if j ≥ i −k +2 and a[j] ≥ a[j ′] for

any j ′ with j < j ′ ≤ i .

Proof. Suppose we are at the end of the i -th iteration, and we have a[j] < a[j ′] and j < j ′. At any later
interval i ′ > i , if i ′-th interval does not contain a[j], a[j] naturally will not be the largest number in this
interval. If i ′-th interval contains a[j], since j < j ′ ≤ i < i ′, a[j ′] is also contained in this interval. In this
case, a[j] will not be the largest number due to the presence of a[j ′]. As a result, j ∉C .
To show the second part, it suffices to notice that a[j] will be the largest number in (j +k −1)-th interval
if all of a[i +1], a[i +2], . . . , a[j +k −1] are less than a[j].

Proposition 6. Suppose C stores the indices by the ascending order. After each iteration of the algorithm, the

sequence a[C [i]] is decreasing in i .

Proof. This follows straightforwardly from the first part of Proposition 5.

With the help from C , it is then easy to find b[i]. Since C stores the indices of all the first i −1 numbers
who can potentially be the largest, by Proposition 6, we directly have b[i] = max{a[C [1]], a[i]}. It remains
to figure out how to update C by the end of the i -th iteration.
Firstly, we need to check if the first index of C is “expired” after i -th iteration. That is, we check C [1], and
we remove C [1] from C if C [1] < i−k+2. In particular, notice that the (i+1)-th interval starts at a[i−k+2].
It is also easy to see that, by the end of each iteration, at most one index from C can be expired (why?).
Secondly, after seeing the value of a[i], we need to remove those j ∈ C such that a[j] no longer has a
chance to be the largest number in a later interval. By proposition 5, we need to remove exactly those
j ∈C such that a[j] < a[i].
We can use a queue to store C , as we only need to remove elements from both ends of C and add elements
from one end. The algorithm is presented in Algorithm 1.
The time complexity for Algorithm 1 is O(n), as it can be easily checked that each number is included in
C exactly once and is removed from C at most once.

3 Longest Increasing Subsequence (Revisited)

We have seen a dynamic programming algorithm for the longest increasing subsequence problem with
time complexity O(n2). In this lecture, we will see a more clever dynamic programming algorithm that
runs in O(n logn) time.

Problem 7. Given a sequence of n numbers a[1 · · ·n], find the length of the longest (strictly) increasing
subsequence.

4

Algorithm 1 Find largest number in every k consecutive numbers.
Input: a[1 · · ·n], k ∈Z+

Output: b[1 · · ·n], where b[i] is the largest number in the i -th interval

1: C ← {1}

2: b[1] = a[1]

3: for i = 2, . . . ,n:
4: b[i] ← max{a[i], a[C [1]]}

5: if C [1] < i −k +2: remove the first element from C

6: while a[i] is greater than the last element of C :
7: remove the last element from C

8: endwhile

9: append a[i] to the end of C

10: endfor

11: return b

Let F (i , j) be defined as follows: consider the set of all increasing subsequences with length j in a[1 · · · i]; in
this set of subsequences, consider the subsequence with the smallest ending number; F (i , j) is then defined
to be the ending number of this subsequence; if a[1 · · · i] does not contain a subsequence with length j ,
set F (i , j) =∞. Let leni be the maximum j such that F (i , j) <∞. It is clear that leni is the length of the
longest increasing subsequence in a[1 · · · i].

Example 8. Consider the input a[1 · · ·8] = {1,8,3,6,5,4,7,2}. Let us find F (5, j) for each j . In a[1 . . .5] =
{1,8,3,6,5}.

• The set of all increasing subsequences with length 1 is {1}, {8}, {3}, {6} and {5}. Among then, {1} has
the smallest ending number, which is 1. Therefore, F (5,1) = 1.

• The set of all increasing subsequences with length 2 is {1,8}, {1,3}, {1,6}, {1,5}, {3,6} and {3,5}. Among
then, {1,3} has the smallest ending number, which is 3. Therefore, F (5,2) = 3.

• The set of all increasing subsequences with length 3 is {1,3,6} and {1,3,5}. Among then, {1,3,5} has
the smallest ending number, which is 5. Therefore, F (5,2) = 5.

• a[1 . . .5] = {1,8,3,6,5} does not contain any subsequence with length 4, or more than 4. Therefore,
F (5,4) = F (5,5) = ·· · =∞.

In this example, we have len5 = 3.

For the initial condition, we obviously have F (1,1) = a[1], F (1,2) = F (1,3) = ·· · = ∞, and len1 = 1. The
output of the algorithm is simply lenn . It remains to find the recurrence relation.

Proposition 9. For each i = 1, . . . ,n, {F (i ,1),F (i ,2), . . . ,F (i ,leni)} is a strictly increasing sequence.

5

Proof. Consider any i and any j1, j2 such that j1 < j2 ≤ leni . We aim to show that F (i , j1) < F (i , j2). Let
S[1 · · · j2] be an increasing subsequence of a[1 · · · i] such that F (i , j2) = S[j2]. Consider the subsequence
S[1 · · · j1]. Since S is increasing, we have S[j1] < S[j2]. We have identified an increasing subsequence of
a[1 · · · i] with length j1 that ends at S[j1], and we have S[j1] < S[j2] = F (i , j2). This implies F (i , j1) ≤ S[j1] <
F (i , j2).

Suppose we already know F (i −1,1), . . . ,F (i −1,leni−1). We need to find leni and F (i ,1), . . . ,F (i ,leni) in
order to build a recurrence relation.

Proposition 10. leni−1 ≤ leni ≤ leni−1+1. In addition, if leni = leni−1+1, then every increasing subse-

quence of a[1 · · · i] with length leni must end at a[i].

Proof. leni ≥ leni−1 is trivial, as every increasing subsequence of a[1 · · · i −1] is also an increasing sub-
sequence of a[1 · · · i]. It is also easy to see that leni ≤ leni−1+1: if there is an increasing subsequence
of a[1 · · · i] with length at least leni−1+2, there must exist an increasing subsequence of a[1 · · · i −1] with
length at least leni−1+1, which contradicts to that the longest increasing subsequence of a[1 . . . i − 1]

has length leni−1. For the second part of the proposition, if there exists an increasing subsequence with
length leni−1+1 in a[1 · · · i] that does not end at a[i], then this is also a subsequence of a[1 · · · i −1], which
contradicts to that the longest increasing subsequence of a[1 . . . i −1] has length leni−1.

We then discuss two cases: 1) a[i] > F (i −1,leni−1) and 2) a[i] ≤ F (i −1,leni−1).

Case 1. In this case, there exists an increasing subsequence of a[1 · · · i −1] with length leni−1 that ends
at a value less than a[i]. Then, appending a[i] to this subsequence yields a subsequence of a[1 · · · i] with
length leni−1+1. By Proposition 10, this implies leni = leni−1+1, and all increasing subsequences of
a[1 · · · i] with length leni must end at a[i]. Therefore, F (i ,leni) = a[i].
In addition, for each j = 1, . . . ,leni−1, we have F (i , j) = F (i −1, j). To see this, Proposition 9 implies that
F (i −1, j) ≤ F (i −1,leni−1) < a[i]. For each j = 1, . . . ,leni−1, there exists an increasing subsequence of
a[1 · · · i −1] with length j that ends at a value of F [i −1, j]. Since this is also an increasing subsequence of
a[1 · · · i], we have F [i , j] ≤ F [i −1, j]. Suppose for the sake of contradiction that F (i , j) < F (i −1, j). There
exists an increasing subsequence of a[1 . . . i] with length j that ends at a value less than F (i −1, j). Since
we have seen a[i] > F (i −1,leni−1) ≥ F (i −1, j), this increasing subsequence must not end at a[i]. As a
result, this subsequence is also a subsequence of a[1 · · · i −1], contradicting to that the minimum ending
value of a subsequence of a[1 · · · i −1] with length j is F (i −1, j).
In conclusion, for Case 1, we have leni = leni−1+1, F (i ,leni) = a[i] and F (i , j) = F (i − 1, j) for each
j = 1, . . . ,leni−1.

6

Case 2. Firstly, we show that leni = leni−1. Suppose leni > leni−1. Proposition 10 implies leni =
leni−1+1 and all increasing subsequences of a[1 · · · i] with length leni must end at a[i]. If we truncate
a[i] from each of those increasing subsequences, each of those subsequences will be a subsequence of
a[1 · · · i −1] with length leni−1 and will end at a value strictly less than a[i]. Since a[i] ≤ F (i −1,leni−1),
each of those subsequences with length leni−1 ends at a value strictly less than F (i −1,leni−1), which
contradicts to our definition of F (·, ·).
Secondly, let j∗ be the minimum index such that F (i −1, j∗) ≥ a[i]. Proposition 9 implies that F (i −1, j) >
a[i] for all j > j∗ and that we can find j∗ by a binary search. We will show that

F (i , j) =


F (i −1, j) if j < j∗ (a)

a[i] if j = j∗ (b)

F (i −1, j) if j > j∗ (c)

Proof of (a). By our definition of j∗, we have F (i −1, j) < a[i]. We first have F (i , j) ≤ F (i −1, j), as every
increasing subsequence of a[1 · · · i−1] with length j is also an increasing subsequence of a[1 · · · i]. Consider
an increasing subsequence of a[1 · · · i] with length j that has the minimum ending value F (i , j). If this
subsequence ends at a[i], we have F (i , j) = a[i] > F (i − 1, j), which contradicts to F (i , j) ≤ F (i − 1, j).
Thus, this subsequence must not end at a[i]. Then, this is also an increasing subsequence of a[1 · · · i −1]

which ends at F (i −1, j), and we have F (i , j) = F (i −1, j).
Proof of (b). Let S be an increasing subsequence of a[1 · · · i − 1] with length j∗ that ends at F (i − 1, j∗).
Since F (i −1, j∗−1) < a[i] and F (i −1, j∗) ≥ a[i], we have S[j∗−1] < a[i] and S[j∗] ≥ a[i]. Consider the
subsequence S′ obtained by replacing the last number of S by a[i]. This is an increasing subsequence of
a[1 · · · i] with length j∗ that ends at a[i]. Thus, F (i , j) ≤ a[i]. On the other hand, for an arbitrary increasing
subsequence of a[1 · · · i] with length j∗, if it does not end at a[i], then ending value is F (i −1, j∗), which
is at least a[i]. Therefore, we also have F (i , j) ≥ a[i].
Proof of (c). It suffices to show that any increasing subsequence of a[1 · · · i] with length j must not end
at a[i]. First of all, since j > j∗, we have F (i −1, j −1) ≥ F (i −1, j∗) ≥ a[i]. If there exists an increasing
subsequence of a[1 · · · i] with length j that ends at a[i], then the (j −1)-th entry of this subsequence should
be strictly less than a[i]. We have found an increasing subsequence of a[1 · · · i −1] with length j −1 that
ends at a value strictly less than a[i], contradicting to that F (i −1, j −1) ≥ a[i].
When implementing this algorithm, we can omit the first argument of F (·, ·). The algorithm is presented
in Algorithm 2.
The time complexity for Algorithm 2 is O(n logn): for each of the n iterations, Case 1 can be handled in a
constant time, and Case 2 can be handled in O(logn) time since a binary search requires O(logn) time.

7

Algorithm 2 A better dynamic programming algorithm for longest increasing subsequence
Input: a[1 · · ·n]

Output: the length of the longest increasing subsequence of a

1: initialize F such that F (1) = a[1] and F (2) = ·· · = F (n) =∞
2: len← 1

3: for i = 2, . . . ,n:
4: if a[i] > F (len): // Case 1
5: len← len+1

6: F (len) ← a[i]

7: else // Case 2
8: find j∗ ← argmin j {F (j) ≥ a[i]} by a binary search
9: F (j∗) ← a[i]

10: endif

11: endfor

12: return len

4 Test Solidity of Eggs

Problem 11. We have m identical eggs and a building with n levels. The solidity of those eggs is defined
by the maximum number s ∈ {0,1, . . . ,n} such that the egg remains intact when being thrown at the s-th
level of the building. In particular, if the egg is broken when being thrown at the first level, its solidity is
0. We would like to decide the solidity of those identical eggs by performing a sequence of experiments.
In each experiment, an egg is thrown at a chosen particular level of the building. If this egg is intact after
the experiment, we can reuse it in the next experiment; otherwise, this egg can no longer be used. As a
requirement, the sequence of experiments must be able to decide the solidity in the worst case. In this
problem, we are to decide the number of experiments needed to decide the solidity of the eggs in the worst
case.

Let us first look at some examples to understand the problem better.
Suppose m = 1. The number of experiments needed is n. In fact, the only strategy is sequentially throwing
the egg from levels 1,2, . . . ,n. If the egg is broken after being thrown at the i -th level, we know the solidity
is i −1. We can prove by induction that this is the only strategy that can guarantee us to know the solidity
of the egg. For the base step, our first experiment must be throwing the egg at the first level. If we throw
the egg at level i > 1 instead, there is a possibility that the egg breaks. In this case, we have no more eggs
for experiments, and the solidity can be any of 0,1, . . . , i −1. Thus, there is a possibility we fail to decide the
solidity of the egg. For the inductive step, suppose the first i experiments must be throwing the eggs at
level 1, . . . , i respectively. If the next egg is not thrown from level i +1, it must be thrown at level i ′ > i +1

8

(there is no point to redo any experiments for throwing the eggs from level 1, . . . , i). However, there is a
possibility that the egg breaks, and the solidity can be any of i+1, i+2, . . . , i ′, which is undecided. Thus, the
(i +1)-th experiment must be throwing the egg from the (i +1)-th level, which proves the inductive step.
After showing that sequentially throwing the egg from levels 1,2, . . . ,n is the only strategy, it is easy to see
that the number of experiments needed to decide the solidity is n in the worst case: there is a possibility
that the solidity is exactly n, in which case we need to perform all those n experiments.
Suppose m = 2 and

p
n is an integer. We can test the solidity by only O(

p
n) experiments. Firstly, we

sequentially test the first egg at levels
p

n,2
p

n, . . . ,n, and we can find the number i∗ such that the egg
is intact at level i∗

p
n and broken at level (i∗+1)

p
n. After that, we use the second egg to test for level

i∗
p

n +1, i∗
p

n +2, . . . , (i∗+1)
p

n −1. This can safely decide the solidity of the eggs.
Suppose m ≥ dlog2(n+1)e. The number of the eggs is sufficient for us to perform a binary search. Therefore,
we can decide the solidity of the eggs by dlog2(n +1)e experiments. It is also easy to see that this is the
best we can do.

4.1 A Dynamic Programming Algorithm

Let F (i , j) be the number of experiments needed to decide the solidity if we have a total of i eggs and j

levels. We need to find F (m,n). We have seen in the first example that F (1, j) = j for each j = 1, . . . ,n. We
set F (i ,0) = 0. It now remains to find a recurrence relation for F (i , j).
Suppose in the first experiment we throw an egg at level k . If the egg is broken, we know the solidity
is one of 0,1, . . . ,k − 1. We have i − 1 eggs now, and we can assume without loss of generality that the
building has only k −1 levels. Therefore, the total number of experiments needed (after this experiment)
is F (i −1,k −1).
If the egg is intact, we know the solidity is one of k,k+1, . . . , j , and we still have i eggs. We can assume we
now have a new building with j −k levels. Then, throwing an egg at the k ′-th level in this new building is
equivalent as throwing it at the (k ′+k)-th level in the original building. In particular, level k in the original
building corresponds to level 0 in the new building. The the total number of experiments needed (after the
first experiment) is F (i , j −k).
Since we are considering the worst case, we need to be able to handle both scenarios (broken and intact).
Thus, we need to take the maximum of F (i −1,k −1) and F (i , j −k). Therefore, the recurrence relation is

F (i , j) = min
k=1,..., j

{
max{F (i −1,k −1),F (i , j −k)}+1

}
.

This gives us a dynamic programming algorithm with time complexity O(mn2): the total number of states
is mn, and each state requires O(n) to process the recurrence relation.
This algorithm can be optimized to O(n2 logn). We have seen that the number of experiments needed is
dlog2(n+1)ewhen m ≥ dlog2(n+1)e. Therefore, we can let the algorithm directly output dlog2(n+1)ewhen

9

m ≥ dlog2(n +1)e. We only need dynamic programming for m < dlog2(n +1)e. By this optimization, we
have only O(n logn) states, and the overall time complexity is O(n2 logn).
This algorithm can be further optimized. We prove the following proposition first.

Proposition 12. F (i , j) ≥ F (i , j −1).

Proof. We have a sequence of F (i , j) experiments to decide the solidity when the building has a total of j

levels. This same sequence of experiments can be used to decide the solidity if the building only have a
total of j −1 levels. In addition, if there is an experiment that throws an egg at level j in this sequence, we
can just remove this experiment from the sequence. Therefore, the number of experiments needed for the
case with j −1 levels is at most F (i , j).

With this proposition, we know that F (i − 1,k − 1) is weakly increasing in k , and F (i , j − k) is weakly
decreasing in k . From Fig. 3, it is easy to see that max{F (i −1,k −1),F (i , j −k)} is minimized when F (i −
1,k −1) and F (i , j −k) are approximately equal (notice that k only takes integer values, so there may not
exist a k such that the two functions are equal). More precisely, if there exists a k∗ such that F (i−1,k∗−1) =
F (i , j −k∗), max{F (i −1,k −1),F (i , j −k)} is minimized at k∗; otherwise, max{F (i −1,k −1),F (i , j −k)} is
minimized at either k† or k†+1, where k† is defined such that F (i −1,k†−1) < F (i , j −k†) and F (i −1,(k†+
1)−1) > F (i , j − (k† +1)). Since F (i −1,k −1)−F (i , j −k) is weakly increasing in k , we can use a binary
search to find k∗ or k†. Thus, it only requires O(logn) time to process the recurrence relation. The overall
time complexity is then O(n(logn)2).

k

y

1 j

y = F (i− 1, k − 1)
y = F (i, j − k)

y = max{F (i− 1, k − 1), F (i, j − k)}

Figure 3: max{F (i −1,k−1),F (i , j −k)} is minimized when F (i −1,k−1) and F (i , j −k) are approximately
equal.

10

4.2 A Better Dynamic Programming Algorithm

Although we have optimized the dynamic programming algorithm in the previous section, there exists a
better dynamic programming algorithm that is designed in a different way.
Let G(i , j) be the maximum total number of levels of the building such that we can find the solidity of the
eggs with j eggs and i experiments. To solve Problem 11, we need to find k ∈Z+ such that G(k−1,m) < n

and G(k,m) ≥ n. For initial conditions, we have G(0, j) = 0 for all j (if we do not need to test at all, then
the number of levels must be 0), and G(i ,0) = 0 for all i (if we do not have any egg, the number of levels
must be 0).
To find a recurrence relation, suppose we have j eggs and we only need to perform i experiments to decide
the solidity. Suppose we have a total of n levels, and the first experiment in an optimal strategy is to throw
the egg at the k-th level. If the egg breaks, we know that the solidity is one of 0,1, . . . ,k −1; otherwise, we
know the solidity is one of k,k +1, . . . ,n. We have i −1 experiments left in both cases. We have j −1 eggs
left in the first case, and we have j eggs left in the second case. To find G(i , j), we need to maximize the
values for both k −1 and n −k .
For k −1, we need to make sure that the solidity can still be decided with j −1 eggs and i −1 experiments
if the total number of the levels is k −1. The maximum possible value for k −1 is G(i −1, j −1).
For n −k , we need to make sure that the solidity can still be decided with j eggs and i −1 experiments if
the total number of levels is n −k . The maximum possible value for n −k is G(i −1, j).
Putting together, the maximum possible value of n is

n = (n −k)+ (k −1)+1 =G(i −1, j)+G(i −1, j −1)+1.

Thus, we have the recurrence relation

G(i , j) =G(i −1, j)+G(i −1, j −1)+1.

To analyze the time complexity for this algorithm, first notice that we only need to worry about those
G(i , j) such that j ≤ m < dlog2(n+1)e. The total number of states in this dynamic programming algorithm
is then O(logn) times the minimum number of k such that G(k,m) ≥ n, and each state requires a constant
time to compute by the recurrence relation. Now we find an upper bound on the minimum number of k

satisfying G(k,m) ≥ n.

Proposition 13. G(i , j) ≥ (i
min{i , j }

)
.

Proof. We prove this by induction. For the base step, we can compute by the recurrence relation that
G(1, j) = 1 for all j . We also have

(1
min{1, j }

)= 1. The inequality holds.
For the inductive step, suppose the inequality holds for each of i = 1, . . . , i ′ and all j . We aim to show
that the inequality holds for i = i ′+1 and all j . If j ≥ i ′+1, we have G(i ′+1, j) > 1 (clearly, with i ′+1

11

experiments and at least as many eggs as this, we can decide the solidity for more than 1 level of the
building), and we have

(i ′+1
min{i ′+1, j }

) = 1. The inequality holds. If j < i ′+1, we have min{i ′, j } = j , and by
the recurrence relation and induction hypothesis,

G(i ′+1, j) =G(i ′, j)+G(i ′, j −1)+1 >
(

i ′

j

)
+

(
i ′

j −1

)
=

(
i

j

)
,

where the last equality is by Pascal’s identity.

With this proposition, if we let ϕ(n) be the minimum integer k such that
(k

m

)≥ n, the time complexity of
the algorithm is O(ϕ(n) logn). Notice thatϕ(n) grows slowly in n. For m as small as 2, we haveϕ(n) =p

n.
It grows even slower for larger m. The only case when ϕ(n) grows linearly is when m = 1. However, as
we have seen at the beginning, the number of experiments needed for only 1 egg is exactly n, and we do
not need to run the dynamic programming algorithm to figure this out.
Combining all these, the algorithm is presented in Algorithm 3.

Algorithm 3 The clever dynamic programming algorithm for Problem 11
Input: m,n ∈Z+

Output: the number of experiments needed

1: if m ≥ dlog2(n +1)e, return dlog2(n +1)e
2: if m = 1, return n

3: set G(0, j) ← 0 for each of j = 0,1, . . . ,m

4: for i = 1,2,3, . . . ,∞:
5: G(i ,0) = 0

6: for j = 1, . . . ,m:
7: G(i , j) ←G(i −1, j)+G(i −1, j −1)+1

8: endfor

9: if G(i ,m) ≥ n, break
10: endfor

11: return i

5 Product of Sets, Quadrangle Inequality

Definition 14. Given two sets L1 and L2, the product of L1 and L2 is defined as L1 ×L2 = {(a1, a2) | a1 ∈
L1, a2 ∈ L2}.

In this section, we assume computing the product L1×L2 requires |L1|·|L2| operations. Suppose wewant to
compute the product of L1×L2×L3, and let |L1| = n1, |L2| = n2 and |L3| = n3. If we compute the product in

12

the left-to-right order, the number of operations required is n1n2+n1n2n3. If we compute L2×L3 first and
then compute L1×(L2×L3), the number of operations required is n2n3+n1n2n3. We can see that different
orders of computing a chain of set products require different number of operations. This is similar to the
case of chain matrix multiplication we have seen in Lecture 8.

Problem 15. Given L1, . . . ,Ln , find the minimum number of operations to compute L1 ×·· ·×Ln .

Let |Li | = ni for each i = 1, . . . ,n. Let c(i , j) be the minimum number of operations to compute Li ×·· ·×L j .
We have seen in Lecture 8 the following recurrence relation holds:

c(i , j) = w(i , j)+ min
k:i<k≤ j

{
c(i ,k −1)+ c(k, j)

}
,

where w(i , j) = ni ni+1 · · ·n j . We have n2 states and each state requires O(n) time to compute the recur-
rence relation. Therefore, the overall time complexity is O(n3). In this lecture, we will see how to improve
this to O(n2). This result is due to Yao [1980].
The two key properties of w(·, ·) that enable this improvement are

• Monotonicity: w(i , j) ≤ w(i ′, j ′) if [i , j] ⊆ [i ′, j ′], and

• Quadrangle Inequality (QI): w(i , j)+w(i ′, j ′) ≤ w(i ′, j)+w(i , j ′) for i ≤ i ′ ≤ j ≤ j ′.

A geometric interpretation of QI is available in Fig. 4. Perhaps “anti-quadrangle inequality” is a more
intuitive name for this inequality: the inequality is of the opposite direction to its geometric counterpart.

j′

i

i′

j

Figure 4: A geometric interpretation of the quadrangle inequality.

Theorem 16. If w(·, ·) satisfies monotonicity and QI, then c(1,n) can be computed in time O(n2).

Before proving this theorem, we first verify that monotonicity and QI hold for w . The monotonicity is
obvious. For QI, let a = ni · · ·ni ′−1,b = ni ′ · · ·n j , and c = n j+1 · · ·n j ′ . Then QI becomes

ab +bc ≤ b +abc.

This is true since
0 ≤ b(a −1)(c −1).

Theorem 16 follows from the following two lemmas. In the remaining part of this section, we use ck (i , j)

to denote w(i , j)+ c(i ,k −1)+ c(k, j).

13

Lemma 17. if w(·, ·) satisfies QI and monotonicity, then c(·, ·) also satisfies QI.

Proof. The proof is by induction on the length ℓ= j ′− i of the “long side” of the quadrangle inequality

c(i , j)+ c(i ′, j ′) ≤ c(i ′, j)+ c(i , j ′) for i ≤ i ′ ≤ j ≤ j ′. (1)

First not that (1) is trivial when i = i ′ or j = j ′. Therefore, (1) is true when ℓ≤ 1. Inductively, consider two
cases: A) i < i ′ = j < j ′, and B) i < i ′ < j < j ′. (See Fig. 5.)

i

j′

i′ = j
z

Case A1) j′

i

i′

j

z
y

Case B1)

Figure 5: The proof of Lemma 17

Case A). i < i ′ = j < j ′.
In this case, (1) becomes the (inverse) trangle inequality:

c(i , j)+ c(j , j ′) ≤ c(i , j ′) for i < j < j ′. (2)

Suppose c(i , j ′) is minimized at k = z; that is, c(i , j ′) = cz (i , j ′) where we recall that we use ck (i , j) to
denote w(i , j)+ c(i ,k −1)+ c(k, j). There are two symmetric subcases.
Case A1). z ≤ j .
We have c(i , j) ≤ cz (i , j) = w(i , j)+ c(i , z −1)+ c(z, j). Therefore,

c(i , j)+ c(j , j ′) ≤ w(i , j)+ c(i , z −1)+ c(z, j)+ c(j , j ′)

≤ w(i , j ′)+ c(i , z −1)+ c(z, j ′)

= c(i , j ′),

where we used the monotonicity of w and the induction hypothesis (2) at z ≤ j ≤ j ′.
Case A2). z ≥ j . This is symmetric with A1), with all the intervals reversed.
Case B). i < i ′ < j < j ′.
Assume the two terms on the right-hand side of (1) achieve their values at k = y and k = z respectively.
That is,

c(i ′, j) = cy (i ′, j), and c(i , j ′) = cz (i , j ′).

We again look at two symmetric subcases.

14

Case B1). z ≤ y .
We have

c(i ′, j ′) ≤ cy (i ′, j ′), and c(i , j) ≤ cz (i , j).

Adding them up, we obtain

c(i , j)+ c(i ′, j ′)

≤cz (i , j)+ cy (i ′, j ′)

=w(i , j)+w(i ′, j ′)+ c(i , z −1)+ c(z, j)+ c(i ′, y −1)+ c(y, j ′).

Applying QI of w and the induction hypothesis (1) at the points z ≤ y < j < j ′, we have

c(i , j)+ c(i ′, j ′)

≤w(i ′, j)+w(i , j ′)+ c(i , z −1)+ c(i ′, y −1)+ c(y, j)+ c(z, j ′)

≤cy (i ′, j)+ cz (i , j ′)

=c(i ′, j)+ c(i , j ′).

Case B2). z ≥ y . This again reduced to B1) when all intervals are reversed.

Let us use Kc (i , j) to denote max{k | ck (i , j) = c(i , j)}; so Kc (i , j) is the largest index k where the minimum
is achieved in (1). (We define Kc (i , i) = i .)

Lemma 18. If the function c(·, ·) satisfies QI, then we have

Kc (i , j) ≤ Kc (i , j +1) ≤ Kc (i +1, j +1) for i ≤ j . (3)

Proof. It is trivially true when i = j . Therefore, we assume i < j from now on. To prove the first inequality
Kc (i , j) ≤ Kc (i , j +1), we show that for i < k ≤ k ′ ≤ j ,

ck ′(i , j) ≤ ck (i , j) =⇒ ck ′(i , j +1) ≤ ck (i , j +1). (4)

Taking the QI of c at k ≤ k ′ ≤ j < j +1, we have

c(k, j)+ c(k ′, j +1) ≤ c(k ′, j)+ c(k, j +1).

Adding w(i , j)+w(i , j +1)+ c(i ,k −1)+ c(i ,k ′−1) to both sides, we get

ck (i , j)+ ck ′(i , j +1) ≤ ck ′(i , j)+ ck (i , j +1),

from which (4) follows. Similarly, the second inequality Kc (i , j +1) ≤ Kc (i +1, j +1) follows from the QI of
c at i < i +1 ≤ k ≤ k ′.

15

Lemma 18 says that the matrix Kc (i , j) is non-decreasing along each row and column. Let δ = j − i . We
use the following topological order for the dynamic programming: at the outer for-loop, we enumerate
δ= 0,1, . . . ,n −1; at the inner for-loop, we enumerate i = 1,2, . . . ,n −δ. To compute c(i , j) = c(i , i +δ) by
the recurrence relation c(i , j) = w(i , j)+mink:i<k≤ j

{
c(i ,k −1)+ c(k, j)

}
, Lemma 18 suggests that we only

need to search for k from Kc (i , i + (δ−1)) to Kc (i +1, i +1+ (δ−1)) (instead of from i to j = i +δ). Notice
that the values for Kc (i , i +(δ−1)) and Kc (i +1, i +1+(δ−1)) have already been computed at the previous
iteration of the outer for-loop.
To analyze the time complexity, we compute the number of the values for k that have been considered in
each iteration of the outer for-loop. We have see that, for each i , we need to search for k from Kc (i , i +(δ−
1)) to Kc (i+1, i+1+(δ−1)), which means that we need to search for Kc (i+1, i+1+(δ−1))−Kc (i , i+(δ−1))

different values. Therefore, the total number of values searched is

n−δ∑
i=1

(Kc (i +1, i +1+ (δ−1))−Kc (i , i + (δ−1))) = Kc (n −δ+1,n)−Kc (1,δ) ≤ n.

For the first equality above, notice that most of the Kc terms are cancelled in the summation. Since it takes
O(n) time to process each iteration of the outer for-loop, the overall time complexity is O(n2).

参考文献

F Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proceedings of the twelfth

annual ACM symposium on Theory of computing, pages 429–435, 1980. 13

16

	Lecture 10 – Dynamic Programming 3
	Non-attacking Kings on Chessboard
	Largest Number in Every k Consecutive Numbers
	Longest Increasing Subsequence (Revisited)
	Test Solidity of Eggs
	A Dynamic Programming Algorithm
	A Better Dynamic Programming Algorithm

	Product of Sets, Quadrangle Inequality

