Al2615 B 508 2020-2021 A % 3 #

Lecture 1 — Introduction
2021 42 H 26 H
Lecturer: 5k 3t 5z Scribe: K E 2

1 Running Time of Algorithms

Definition 1 (Running Time). The running time of an algorithm for a specific input is the number of atomic

operations (steps) executed.

Example 2. How to calculate the Fibonacci Number?
Fib(n-1)+Fib(n—-2) n=2
Vne N,Fib(n) =4 1 n=1

0 n=0

Algorithm 1 Recurrence

Function Fib; (n)
if n=0return 0
if n=1return 1
if n=2 return Fib;(n—-1) +Fib1(n—-2)

EndFunction

Running time of Algorithm 1 Let T (n) be the running time of Algorithm 1 for input number n.

1 n<l
Ti(n) =

Tin-1)+Ti(n-2)+1 n=2

We have Tj(n) = Fib(n) = 229,

Running time of Algorithm 2 Let 7,(n) be the running time of Algorithm 2 for input number n. The
algorithm exactly runs n—2 iterations, can we say that T, (n) = O(n)? The answer is no because “addition” is
not an atomic operation when n grows large. In fact, if we write F[n] in binary, it is a O(n)-length string.
Therefore, we need to add two length-n numbers in the worst case, and this requires O(n) operations.

operations. Thus, T»(n) = o(n?).

Algorithm 2 Non-recursive Algorithm

Function Fib,(n)
F[0] —0,F[1] <1
fori=2ton
Fli] — F[i—1]+ F[i—2]
return F[n]

EndFunction

) Fib(n) 0 1||Fib(n-1)
One can observe that for every n = 2, it holds that = , and therefore
Fib(n—-1) 1 1] |Fib(n-2)

n

Fib(n) 0 1) |1 e . .

= . Our third algorithm is to compute the matrix multiplication in one iteration.
Fib(n—-1) 1 1 0

Algorithm 3 Matrix Power
n
Fib(n) 0 1 ol . . .
Compute = via 1teration.
Fib(n-1) 1 1 1

Running time of Algorithm 3 Let T3(n) be the running time of Algorithm 3 for input number n. Since the

iteration needs to multiply 7 matrices and each of which involves additions of two O(n)-length integers.
Therefore T5(n) = O(n?).
In fact, the trick of exponentiation by squaring can boost the computation of A” for a matrix A. First assume

n=2% Then A" = A*" can be computed using k matrix multiplications following the recursion:
Azk _ (Azk—l)z

[log, n|

For those n who are not necessarily the power of 2, we can write it in binary n =}, " a; -2% and
lloganl i 1 i\ 4i . . 251 q
decompose A" = AL a2 = szogz & (AZ) . Therefore, one requires O(log n) matrix multiplications to

compute A"

Algorithm 4 Matrix Power

n n
« L . 01) Fib(n) 0 1| (O
Use “Exponentiation by Squaring” to calculate , and get Fib(n) by = .
1 1 Fib(n—-1) 1 1 1

Running time of Algorithm 4 Let 74(n) be the running time of Algorithm 4 for input number n. Expo-
nentiation by Squaring requires O(logn) multiplications of two 2 x 2 matrices, and each of the multiplica-
tions needs to compute the product of two O(n)-length numbers. Let M(n) be the running time of one

multiplying task for two n-length number, we can simply have T,(n) = O(logn - M(n)).

However, since the product of two n-length binary number is of at most length 2n. We have
T,(n)=0(MMQ)+M@2)+M@4)+M@8) +....M(n)) < O(M(n)), when M(n) = n,

where the last inequality can be proved by induction. Therefore T,(n) = O(M(n)).
Finally, we remark that M(n) = O(n?) with the naive algorithm, and we will learn the Fast Fourier Transform
in this course that two lenght-n integers can be multiplied using O(nlogn) operations. This gives Ty(n) =

O(nlogn).

Algorithm 5 Direct calculation

Directly calculate Fib(n) = \/LE(HT‘@)” - \/lg(l_TfS)”.

Running time of Algorithm 5 There is no direct way to calculate v/5 accurately since it is irrational.

Polynomial-time Algorithm Algorithm 2, Algorithm 3 and Algorithm 4 are polynomial-time algorithms

if we encode the input n using unary number, namely a string of n 1s.

Why we care polynomial-time algorithm?
1. Efficient: go much slower than exponential.
2. Closed: Closed over composition (A(B(C(x)))).

3. Robustness: Robust to machine model. (Randomized Machine: Complexity-theoretic Church-Turing

Thesis.)

	Lecture 1 – Introduction
	Running Time of Algorithms

