
AI2615 算法设计与分析 2020-2021春季学期

Lecture 1 – Introduction
2021年 2月 26日

Lecturer: 张驰豪 Scribe: 张宇昊

1 Running Time of Algorithms

Definition 1 (Running Time). The running time of an algorithm for a specific input is the number of atomic

operations (steps) executed.

Example 2. How to calculate the Fibonacci Number?

∀n ∈ N ,Fib(n) =


Fib(n −1)+Fib(n −2) n ≥ 2

1 n = 1

0 n = 0

Algorithm 1 Recurrence
Function Fib1(n)

if n = 0 return 0

if n = 1 return 1

if n ≥ 2 return Fib1(n −1)+Fib1(n −2)

EndFunction

Running time of Algorithm 1 Let T1(n) be the running time of Algorithm 1 for input number n.

T1(n) =

 1 n ≤ 1

T1(n −1)+T1(n −2)+1 n ≥ 2

We have T1(n) ≥ Fib(n) = 2Ω(n).

Running time of Algorithm 2 Let T2(n) be the running time of Algorithm 2 for input number n. The
algorithm exactly runs n−2 iterations, canwe say that T2(n) =O(n)? The answer is no because “addition” is
not an atomic operation when n grows large. In fact, if we write F [n] in binary, it is a O(n)-length string.
Therefore, we need to add two length-n numbers in the worst case, and this requires O(n) operations.
operations. Thus, T2(n) =O(n2).

1

Algorithm 2 Non-recursive Algorithm
Function Fib2(n)

F [0] ← 0,F [1] ← 1

for i = 2 to n

F [i] ← F [i −1]+F [i −2]

return F [n]

EndFunction

One can observe that for every n ≥ 2, it holds that

 Fib(n)

Fib(n −1)

 =
0 1

1 1

Fib(n −1)

Fib(n −2)

, and therefore Fib(n)

Fib(n −1)

=
0 1

1 1

n 1

0

 . Our third algorithm is to compute the matrix multiplication in one iteration.

Algorithm 3 Matrix Power

Compute

 Fib(n)

Fib(n −1)

=
0 1

1 1

n 0

1

 via iteration.

Running time of Algorithm 3 Let T3(n) be the running time of Algorithm 3 for input number n. Since the
iteration needs to multiply n matrices and each of which involves additions of two O(n)-length integers.
Therefore T3(n) =O(n2).
In fact, the trick of exponentiation by squaring can boost the computation of An for a matrix A. First assume
n = 2k . Then An = A2k can be computed using k matrix multiplications following the recursion:

A2k =
(

A2k−1
)2

.

For those n who are not necessarily the power of 2, we can write it in binary n = ∑blog2 nc
i=0 ai · 2i and

decompose An = A
∑blog2 nc

i=0 ai ·2i =∏blog2 nc
i=0

(
A2i

)ai . Therefore, one requires O(logn) matrix multiplications to
compute An .

Algorithm 4 Matrix Power

Use “Exponentiation by Squaring” to calculate

0 1

1 1

n

, and get Fib(n) by

 Fib(n)

Fib(n −1)

=
0 1

1 1

n 0

1

 .

Running time of Algorithm 4 Let T4(n) be the running time of Algorithm 4 for input number n. Expo-
nentiation by Squaring requires O(logn) multiplications of two 2×2 matrices, and each of the multiplica-
tions needs to compute the product of two O(n)-length numbers. Let M(n) be the running time of one
multiplying task for two n-length number, we can simply have T4(n) =O(logn ·M(n)).

2

However, since the product of two n-length binary number is of at most length 2n. We have

T4(n) =O (M(1)+M(2)+M(4)+M(8)+M(n)) ≤O(M(n)),when M(n) ≥ n,

where the last inequality can be proved by induction. Therefore T4(n) =O(M(n)).
Finally, we remark that M(n) =O(n2) with the naive algorithm, andwewill learn the Fast Fourier Transform
in this course that two lenght-n integers can be multiplied using O(n logn) operations. This gives T4(n) =
O(n logn).

Algorithm 5 Direct calculation

Directly calculate Fib(n) = 1p
5

(1+p5
2)n − 1p

5
(1−p5

2)n .

Running time of Algorithm 5 There is no direct way to calculate
p

5 accurately since it is irrational.

Polynomial-time Algorithm Algorithm 2, Algorithm 3 and Algorithm 4 are polynomial-time algorithms
if we encode the input n using unary number, namely a string of n 1s.

Why we care polynomial-time algorithm?

1. Efficient: go much slower than exponential.

2. Closed: Closed over composition (A(B(C (x)))).

3. Robustness: Robust tomachinemodel. (RandomizedMachine: Complexity-theoretic Church-Turing
Thesis.)

3

	Lecture 1 – Introduction
	Running Time of Algorithms

