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1 Quadratic Regularizer

Recall that the updating rule of the gradient descent algorithm is 𝑥𝑡+1 =

Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )). We have the following result:

Proposition 1 The step 𝑥𝑡+1 = Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )) is equivalent to

𝑥𝑡+1 = argmin
𝑥∗∈𝑉

⟨∇𝑓 (𝑥𝑡 ), 𝑥∗ − 𝑥𝑡 ⟩ +
1
2𝜂

∥𝑥∗ − 𝑥𝑡 ∥2.

Proof.

Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )) = argmin
𝑥∗∈𝑉

∥𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ) − 𝑥∗∥2

= argmin
𝑥∗∈𝑉

⟨𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ) − 𝑥∗, 𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ) − 𝑥∗⟩

= argmin
𝑥∗∈𝑉

⟨𝑥∗, 𝑥∗⟩ − 2⟨𝑥∗, 𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )⟩.

Therefore,

argmin
𝑥∗∈𝑉

⟨∇𝑓 (𝑥𝑡 ), 𝑥∗ − 𝑥𝑡 ⟩ +
1
2𝜂

∥𝑥∗ − 𝑥𝑡 ∥2 = argmin
𝑥∗∈𝑉

2𝜂⟨∇𝑓 (𝑥𝑡 ), 𝑥∗⟩ + ⟨𝑥∗, 𝑥∗⟩ − 2⟨𝑥∗, 𝑥𝑡 ⟩

= argmin
𝑥∗∈𝑉

⟨𝑥∗, 𝑥∗⟩ − 2⟨𝑥∗, 𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )⟩

=Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )) .

□
The intuition behind the updating rule is as follows: Since the only infor-
mation we know about 𝑓 (𝑥) at 𝑡-th step is the gradient ∇𝑓 (𝑥𝑡 ). We locally
use the linear function 𝐿(𝑥) ≜ ⟨∇𝑓 (𝑥𝑡 ), 𝑥 − 𝑥𝑡 ⟩ to approximate 𝑓 (𝑥), and
therefore we try to use argmin𝑥 𝐿(𝑥) to approximate argmin𝑥 𝑓 (𝑥).

𝑥𝑡

𝑓 (𝑥 )

𝐿 (𝑥 )

However, the approximation is not correct as min𝐿(𝑥) = −∞ as long as
∇𝑓 (𝑥𝑡 ) ≠ 0 since 𝐿(𝑥) ≈ 𝑓 (𝑥) only holds for 𝑥 ≈ 𝑥𝑡 . Therefore, we add a
regularization function 1

2𝜂 ∥𝑥 − 𝑥𝑡 ∥2 to force that 𝑥 is close to 𝑥𝑡 .
The choice of the quadratic function here is, in some sense, mainly for

simplicity and not necessarily optimal. Intuitively, if the our local approx-
imator for 𝑓 (𝑥) is more close to 𝑓 , our algorithm is more efficient. As a
result, we can choose some better regularizer once some information about
𝑓 is known.

2 Mirror Descent

First, we fix some notations.
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• 𝜓 : ℝ𝑛 → ℝ is a convex function.

• For any 𝑥,𝑦 ∈ ℝ𝑛 , the Bregman divergence of𝜓 is defined as

𝐵𝜓 (𝑦, 𝑥) = 𝜓 (𝑦) − [𝜓 (𝑥) + ⟨∇𝜓 (𝑥), 𝑦 − 𝑥⟩] .

Intuitive, the Bregman divergence 𝐵𝜓 (𝑦, 𝑥) is the difference between𝜓 (𝑦)
and the linear approximation of𝜓 (𝑦) at (𝑥,𝜓 (𝑥)) (See the figure on the
right).

For example, let𝜓 (𝑥) = 1
2 ∥𝑥 ∥

2. Then

𝐵𝜓 (𝑦, 𝑥) =
1
2
∥𝑦∥2 −

[
1
2
∥𝑥 ∥2 + ⟨𝑥,𝑦 − 𝑥⟩

]
=
1
2
∥𝑥 − 𝑦∥2,

which is exactly the Euclidean distance between 𝑥,𝑦.

𝑦𝑥

𝜓 (𝑦)
𝐵𝜓 (𝑦, 𝑥 )

𝜓

Another important example is the negative entropy function. For 𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 , let𝜓 (𝑥) = ∑𝑛
𝑖=1 𝑥𝑖 log𝑥𝑖 . It is obvious that𝜓 is a convex

For a distribution 𝑝 ∈ Δ𝑛−1, the entropy of
𝑝 is defined as

𝐻 (𝑝 ) ≜ −
𝑛∑
𝑖=1

𝑝𝑖 log𝑝𝑖 .

function since

∇2𝜓 (𝑥)𝑖, 𝑗 =
{

1
𝑥𝑖

𝑖 = 𝑗 ;
0 𝑜.𝑤 .

(1)

Then the Bregman divergence of𝜓 is

𝐵𝜓 (𝑦, 𝑥) =
𝑛∑
𝑖=1

𝑦𝑖 log𝑦𝑖 −
(
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖 ) (1 + log𝑥𝑖 )
)

=
𝑛∑
𝑖=1

𝑦𝑖 log𝑦𝑖 −
𝑛∑
𝑖=1

𝑦𝑖 log𝑥𝑖 −
𝑛∑
𝑖=1

𝑦𝑖 +
𝑛∑
𝑖=1

𝑥𝑖 .

If we restrict 𝑥,𝑦 to Δ𝑛−1, then we have Let 𝜇, 𝜈 be distributions on the
same probability space X. Then the
Kullback-Leibler divergence, i.e. rela-
tive entropy from 𝜇 to 𝜈 is defined as
𝐷𝐾𝐿 (𝜈 ∥ 𝜇 ) = ∑

𝑥 ∈X 𝜈 (𝑥 ) log 𝜈 (𝑥 )𝜇 (𝑥 ) . A sim-
ple interpretation of the KL divergence of 𝜈
from 𝜇 is the expected excess information
content from using 𝜇 as a model when the
actual distribution is 𝜈 .

𝐵𝜓 (𝑦, 𝑥) =
𝑛∑
𝑖=1

𝑦𝑖 log
𝑦𝑖
𝑥𝑖

=𝐷𝐾𝐿 (𝜇𝑦 ∥ 𝜇𝑥 ).

where 𝜇𝑥 , 𝜇𝑦 are the distributions on [𝑛] such that 𝜇𝑥 (𝑖) = 𝑥𝑖 , and 𝜇𝑦 (𝑖) =

𝑦𝑖 .

2.1 Updating Rule of Mirror Descent

Now we generalize the quadratic regularizer in the gradient descent algo-
rithm to Bregman divergences. Let 𝑉 = ℝ𝑛 . Fix a convex function𝜓 . Then
the updating rule of the mirror descent algorithm is

𝑥𝑡+1 = argmin
𝑥∈𝑉

⟨∇𝑓 (𝑥𝑡 ), 𝑥 − 𝑥𝑡 ⟩ +
1
𝜂
𝐵𝜓 (𝑥, 𝑥𝑡 ). (2)

And the following proposition holds.
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Proposition 2 The updating rule 2 is equivalent to

∇𝜓 (𝑥𝑡+1) = ∇𝜓 (𝑥𝑡 ) − 𝜂∇𝑓 (𝑥𝑡 ).
𝑥𝑡

𝑥𝑡+1

𝑍𝑡 = ∇𝜓 (𝑥𝑡 )

𝑍𝑡+1 = 𝑍𝑡 − 𝜂∇𝑓 (𝑥𝑡 )

∇𝜓

∇𝜓 −1
Proof. If𝜓 is chosen to be 1

2 ∥𝑥 ∥
2, then the equivalence holds naturally

since ∇𝜓 is the identity function. We can prove the result when𝜓 is an
arbitrary convex function.

Let 𝐺 (𝑥) ≜ ⟨∇𝑓 (𝑥𝑡 ), 𝑥 − 𝑥𝑡 ⟩ + 1
𝜂𝐵𝜓 (𝑥, 𝑥𝑡 ). We have

∇𝐺 (𝑥) = 0 ⇐⇒∇𝑓 (𝑥𝑡 ) +
1
𝜂
∇[𝜓 (𝑥) −𝜓 (𝑥𝑡 ) − ⟨𝑥 − 𝑥𝑡 ,∇𝜓 (𝑥𝑡 )⟩]

⇐⇒∇𝑓 (𝑥𝑡 ) +
1
𝜂
(∇𝜓 (𝑥) − ∇𝜓 (𝑥𝑡 ))

⇐⇒∇𝜓 (𝑥) = ∇𝜓 (𝑥𝑡 ) − ∇𝑓 (𝑥𝑡 ).

□

Projection

Now we consider the constrained mirror descent, that is, the domain 𝑉 is
some closed convex subset of ℝ𝑛 . For an arbitrary 𝑉 , we need to restrict
𝑥𝑡+1 into 𝑉 in the updating step. It is worth noting that the projection here
is with respect to Bregman divergence instead of Euclidean distance. So the
updating rule 2 is equivalent to

• 𝑍𝑡 = ∇𝜓 (𝑥𝑡 );

• 𝑍𝑡+1 = 𝑍𝑡 − 𝜂∇𝑓 (𝑥𝑡 );

• 𝑥 ′𝑡+1 = ∇𝜓 −1 (𝑍𝑡 );

• 𝑥𝑡+1 = Π
𝜓
𝑉 (𝑥 ′𝑡+1) ≜ argmin𝑥∈𝑉 𝐵𝜓 (𝑥, 𝑥 ′𝑡+1).

The proof is omitted here since it is quite similar to that of Proposition 1.

2.2 Applications of (Online) Mirror Descent

Online learning

Applying the mirror descent algorithm to online learning settings in the
previous lecture introduces the regret bound that

𝑅(𝑇 ) =
𝑇−1∑
𝑡=0

ℓ𝑡 (𝑥𝑡 ) − ℓ𝑡 (𝑥∗)

≤
𝑇−1∑
𝑡=0

[
𝜙 (𝑥𝑡 ) − 𝜙 (𝑥𝑡+1)

𝜂𝑡
+ 𝜂𝑡 · sup

𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]
∥∇𝑓 (𝑥𝑡 )∥2∇2𝜓 (𝜉𝑡 )−1

]
,

where 𝜙 (𝑥) = 𝐵𝜓 (𝑥∗, 𝑥). We take 𝜂𝑡 = 𝜂 for all 𝑡 . Then the regret is For any matrix𝑀 , the matrix norm ∥ · ∥𝑀 is
defined as ∥𝑥 ∥𝑀 ≜

√
𝑥𝑇𝑀𝑥 .
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𝑅(𝑇 ) ≤ 𝜙 (𝑥0)
𝜂

+ 𝜂 ·
𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

∥∇𝑓 (𝑥𝑡 )∥2∇2𝜓 (𝜉𝑡 )−1 .

If𝜓 = 1
2 ∥𝑥 ∥

2, then the matrix bound is exactly 2-norm since ∇2𝜓 = 𝐼 , which
implies exactly the regret bound in previous lectures.

Learning with expert advice

Applying the online mirror descent algorithm to the learning with expert
advice problem, we obtain the following regret bound:

𝑅(𝑇 ) ≤
𝐵𝜓 (𝑥∗, 𝑥0)

𝜂
+ 𝜂

𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

∥ℓ𝑡 ∥2∇2𝜓 (𝜉𝑡 )−1 . (3)

Recall that in this setting, 𝑥𝑡 ∈ Δ𝑛−1 for any 𝑡 . If we take𝜓 (𝑥) =
∑
𝑖 𝑥𝑖 log𝑥𝑖 ,

then the diameter of Δ𝑛−1 w.r.t𝜓 is

diam𝜓 (Δ𝑛−1) = 𝑂 (log𝑛),

which means that the first term on RHS of Eq. 3 is no more that 𝑂 (log𝑛)
𝜂 .

As for the second term, by Eq. 1, we have

𝜂
𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

∥ℓ𝑡 ∥2∇2𝜓 (𝜉𝑡 )−1 =𝜂
𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

𝑛∑
𝑖=1

ℓ𝑡 (𝑖)2𝜉𝑡 (𝑖)

≤𝜂
𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

𝑛∑
𝑖=1

𝜉𝑡 (𝑖)

≤𝜂
𝑇−1∑
𝑡=0

𝑛∑
𝑖=1

𝑥𝑡 (𝑖)

=𝜂𝑇,

where we applied 𝜉𝑡 (𝑖) ≤ 𝑥𝑡 (𝑖) since ∃𝑧 ∈ [𝑍𝑡+1, 𝑍𝑡 ],∇𝜓 −1 (𝑧) = 𝜉𝑡 and ∇𝜓 is
monotone increasing. Finally, we obtain the regret bound that

𝑅(𝑇 ) ≤ 𝑂 (log𝑛)
𝜂

+ 𝜂𝑇 ≤ 𝑂 (
√
log𝑛𝑇 )

by choosing 𝜂 =
√

log𝑛
𝑇 . The regret bound 1

𝜂 + 𝜂𝑛𝑇 ≤
√
𝑛𝑇 in

previous lectures is obtained by choosing
𝜓 = 1

2 ∥𝑥 ∥
2. By changing the potential

function𝜓 , we can balance between these
two terms and obtain an optimal bound.

Multiplicative weights update

In this part, we focus on the combinatorial meaning of the mirror descent
algorithm when choosing𝜓 (𝑥) =

∑𝑛
𝑖=1 𝑥𝑖 log𝑥𝑖 . In this case, ∇𝜓 (𝑥) =

(1 + log𝑥 (1), 1 + log𝑥 (2), . . . , 1 + log𝑥 (𝑛)). Plugging in the definition of𝜓 ,
the updating steps turn to

• 𝑍𝑡 (𝑖) = 1 + log𝑥𝑡 (𝑖);

• 𝑍𝑡+1 (𝑖) = 1 + log𝑥𝑡 (𝑖) − 𝜂∇ℓ𝑡 (𝑖);
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• 𝑥 ′𝑡+1 = 𝑥𝑡 (𝑖)𝑒−𝜂ℓ𝑡 (𝑖 ) ;

• 𝑥𝑡+1 = Π
𝜓
Δ𝑛−1

(𝑥 ′𝑡+1) = argmin𝑥∈Δ𝑛−1
∑𝑛
𝑖=1 𝑥 (𝑖) log

𝑥 (𝑖 )
𝑥 ′𝑡+1 (𝑖 )

. This constrained
convex optimization problem can be solved by the method of Lagrange
multiplier. It is not hard to obtain that

𝑥𝑡+1 (𝑖) =
𝑥 ′𝑡+1 (𝑖)∑
𝑗 𝑥

′
𝑡+1 ( 𝑗)

=
𝑥𝑡 (𝑖)𝑒−𝜂ℓ𝑡 (𝑖 )∑
𝑗 𝑥𝑡 ( 𝑗)𝑒−𝜂ℓ𝑡 ( 𝑗 )

.

The above algorithm is called the multiplicative weights update method,
which was discovered repeatedly in very diverse fields such as machine
learning, optimization, theoretical computer science, and game theory.

Online Stochastic Mirror Descent (OSMD)

Let us return to the multi-armed bandit problem. We still fix𝜓 (𝑥) =∑𝑛
𝑖=1 𝑥𝑖 log𝑥𝑖 here. The regret bound is

𝑅(𝑇 ) ≤
𝐵𝜓 (𝑥∗, 𝑥0)

𝜂
+ 𝜂E

[
𝑇−1∑
𝑡=0

sup
𝜉𝑡 ∈[𝑥𝑡 ,𝑥 ′𝑡+1 ]

∥ℓ𝑡 ∥2∇2𝜓 (𝜉𝑡 )−1

]
(4)

≤ log𝑛
𝜂

+ 𝜂E
[
𝑛∑
𝑖=1

(
1[𝐴𝑡 = 𝑖]ℓ𝑡 (𝑖)

𝑥𝑡 (𝑖)

)2
ℓ𝑡 (𝑖)

]
(5)

≤ log𝑛
𝜂

+ 𝜂E
[
𝑛∑
𝑖=1

1
𝑥𝑡 (𝑖)

𝑥𝑡 (𝑖)
]

(6)

=
log𝑛
𝜂

+ 𝜂𝑇𝑛 (7)

≤
√
𝑛 log𝑛𝑇 (8)

by choosing 𝜂 =
√

log𝑛
𝑛𝑇 .
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