
[CS3958: Lecture 8] Learning with Expert Advice, On-
line Stochastic Gradient Descent
Instructor: Chihao Zhang, Scribed by Yulin Wang

November 25, 2022

Today, we talk about applications of the online gradient descent (OGD)
algorithm. These problems, at the first glance, are not convex optimization
problems. However, we show that the OGD algorithm still applies after
certain transformations.

1 Learning with Expert Advice

In this problem, we can treat each member of [𝑛] as an expert and in each
round, the player needs to pick one expert’s advice to follow. Then the
adversary reveals the loss of each expert. So the game lasts for 𝑇 rounds,
and for each 𝑡 = 0, 1, . . . ,𝑇 − 1,

• The player picks some 𝑥𝑡 ∈ [𝑛];

• The adversary picks some ℓ𝑡 : [𝑛] → ℝ;

• ℓ𝑡 is revealed, and the player pays the cost ℓ𝑡 (𝑥𝑡).

Here ℓ𝑡 can be viewed as a vector in [0, 1] [𝑛] . The regret is therefore the
gap between the accumulative loss of the player and the best expert, i.e.∑𝑇−1

𝑡=0 ℓ𝑡 (𝑥𝑡) − ℓ𝑡 (𝑥∗).
Clearly 𝑉 = [𝑛] is not convex and therefore all previous algorithms based

on convex optimization approach do not apply. In fact, any deterministic
strategy suffers linear regret. To see this, assume 𝑛 = 2 and whenever the

player pick 𝑋𝑡 = 𝑖 ∈ {1, 2}, then the adversary pick ℓ𝑡 (𝑗) =
1, if 𝑗 = 𝑖

0, otherwise
.

After 𝑇 rounds, the cumulative loss of the player is 𝑇 and the best expert
suffers at most 𝑇

2 .
Therefore, a randomized strategy is necessary. That is, in 𝑡-th round,

• The player picks some distribution 𝑥𝑡 ∈ Δ𝑛−1 where Δ𝑛−1 =
{
𝑥 ∈ [0, 1]𝑛 :

∑𝑛
𝑖=1 𝑥𝑖 = 1

}
is the probability simplex;

• The adversary picks some ℓ𝑡 : [𝑛] → ℝ;

• The player plays 𝐴𝑡 ∼ 𝑥𝑡 ;

• ℓ𝑡 is revealed, and the player pays the cost ℓ𝑡 (𝐴𝑡).

The expected regret of this strategy with respect on a fixed expert 𝑗 ∈ [𝑛] is

E

[
𝑇∑
𝑡=1

ℓ𝑡 (𝐴𝑡) − ℓ𝑡 (𝑗)
]
=

𝑇∑
𝑡=1

⟨ℓ𝑡 , 𝑥𝑡 − e𝑗 ⟩,

[cs3958: lecture 8] learning with expert advice, online stochastic gradient descent 2

where e𝑗 is the 𝑗-th standard base of ℝ𝑛 .
Surprisingly, the problem of learning expert advice reduces to a convex

online optimization problem on Δ𝑛 . We apply the online gradient descent
algorithm to this problem:

• Let 𝑥1 = (1𝑛 ,
1
𝑛 , . . . ,

1
𝑛).

• In round 𝑡 = 1, 2, . . . ,𝑇 :

– The adversary picks ℓ𝑡 : [𝑛] → ℝ;

– The player plays 𝐴𝑡 ∼ 𝑥𝑡 ;

– The adversary reveals ℓ𝑡 , and the player pays the loss ℓ𝑡 (𝐴𝑡);
– 𝑥𝑡+1 = ΠΔ𝑛−1 (𝑥𝑡 − 𝜂ℓ𝑡).

Assuming notations in previous sections, we obtain the upper bound on
the expected regret of the algorithm

Diam(Δ𝑛)
2𝜂

+ 𝜂𝑇𝑛

2
=
√
𝑛𝑇

by choosing 𝜂 = 1√
𝑛𝑇

.

2 Online Stochastic Gradient Descent

Let us come back to the multi-armed bandits problem! The problem we met
before is similar to the learning with expert advice except:

• After each round, the player can only observe ℓ𝑡 (𝐴𝑡) instead of the whole
ℓ𝑡 vector;

• The adversary picks each ℓ𝑡 by sampling from a fixed distribution.

We relax the second point by allowing the adversary to arbitrarily pick
ℓ𝑡 . This is called adversarial multi-armed bandit problem. We are going to
solve the problem using online learning approach we learnt, so we have to
overcome the difficulty of not knowing the complete ℓ𝑡 vector.

The idea is to guess ℓ𝑡 using the knowledge of ℓ𝑡 (𝐴𝑡). We construct ℓ̂𝑡 as
an estimate of ℓ𝑡 in each round satisfying E

[
ℓ̂𝑡
]
= ℓ𝑡 and feed this ℓ̂𝑡 into the

gradient descent algorithm. One natural choice of ℓ̂𝑡 is that

∀𝑖 ∈ [𝑛], ℓ̂𝑡 (𝑖) =
1𝐴𝑡=𝑖

𝑥𝑡 (𝑖)
ℓ𝑡 (𝑖).

Then clearly E
[
ℓ̂𝑡
]
= ℓ𝑡 .

Now consider the following algorithm:

• Let 𝑥1 = (1𝑛 ,
1
𝑛 , . . . ,

1
𝑛).

• In round 𝑡 = 1, 2, . . . ,𝑇 :

[cs3958: lecture 8] learning with expert advice, online stochastic gradient descent 3

– The player samples and plays 𝐴𝑡 ∼ 𝑥𝑡 ;

– The adversary chooses ℓ𝑡 , and the player pays the loss ℓ𝑡 (𝐴𝑡);
– Compute ℓ̂𝑡 with the knowledge of ℓ𝑡 (𝐴𝑡);
– 𝑥𝑡+1 = ΠΔ𝑛 (𝑥𝑡 − 𝜂 · ℓ̂𝑡).

This is called the online stochastic gradient descent (OSGD) algorithm.
For every 𝑗 ∈ [𝑛], we want to estimate

E

[
𝑇∑
𝑡=1

⟨ℓ𝑡 , 𝑥𝑡 − e𝑗 ⟩
]
=

𝑇∑
𝑡=1

E
[
⟨ℓ𝑡 , 𝑥𝑡 − e𝑗 ⟩

]
.

If we use F𝑡 denote the 𝜎-algebra containing information in the first 𝑡
rounds, then

• 𝑥𝑡 is F𝑡−1-measurable;

• ℓ𝑡 is F𝑡−1 measurable, and ℓ𝑡 = E
[
ℓ̂𝑡
�� F𝑡−1] .

So for every 𝑡 ∈ [𝑇], we have

E
[
⟨ℓ𝑡 , 𝑥𝑡 − e𝑗 ⟩

]
= E

[
⟨E

[
ℓ̂𝑡
�� F𝑡−1] , 𝑥𝑡 − e𝑗 ⟩

]
= E

[
E
[
⟨ℓ̂𝑡 , 𝑥𝑡 − e𝑗 ⟩

�� F𝑡−1]]
= E

[
⟨ℓ̂𝑡 , 𝑥𝑡 − e𝑗 ⟩

]
.

Surprisingly, we can directly apply our previous analysis of the gradient de-
scent algorithm to the OSGD as if the estimator ℓ̂𝑡 is the true loss function!

Following previous bounds, we obtain

E

[
𝑇∑
𝑡=1

⟨ℓ𝑡 , 𝑥𝑡 − e𝑗 ⟩
]
≤ 1

2𝜂
+ 𝜂

2

𝑇∑
𝑡=1

E
[
∥ℓ̂𝑡 ∥2

]
.

Obvserve that

E
[
∥ℓ̂𝑡 ∥2

]
= E

[
E
[
∥ℓ̂𝑡 ∥2

�� F𝑡−1]]
= E

[
𝑛∑
𝑖=1

𝑥𝑡 (𝑖) ·
(
ℓ𝑡 (𝑖)
𝑥𝑡 (𝑖)

)2]
≤ E

[
𝑛∑
𝑖=1

1
𝑥𝑡 (𝑖)

]
.

The problem here is that we have no control of 𝑥𝑡 and it is possible that
some 𝑥𝑡 (𝑖) = 0 and thus the variance of ∥ℓ̂𝑡 ∥ is unbouded. In other words,
if the probability that some arm 𝑖 is pulled is very close to zero, then our
estimate to ℓ𝑡 (𝑖) oscilates much.

To overcome this, we have to modify our algorithm so that each arm is
pulled with some non-zero probabilty. We define 𝑥𝑡 = (1 − 𝛼) · 𝑥𝑡 + 𝛼 · u
where u =

(1
𝑛 ,

1
𝑛 , . . . ,

1
𝑛

)
is the uniform distribution in each round for some

parameter 𝛼 ∈ [0, 1] and play 𝐴𝑡 following 𝑥𝑡 .

[cs3958: lecture 8] learning with expert advice, online stochastic gradient descent 4

• Let 𝑥1 = (1𝑛 ,
1
𝑛 , . . . ,

1
𝑛).

• In round 𝑡 = 1, 2, . . . ,𝑇 :

– Compute 𝑥𝑡 = (1 − 𝛼) · 𝑥𝑡 + 𝛼 · u;

– The player samples and plays 𝐴𝑡 ∼ 𝑥𝑡 ;

– The adversary chooses ℓ𝑡 , and the player pays the loss ℓ𝑡 (𝐴𝑡);
– Compute ℓ̂𝑡 (using 𝑥𝑡 instead of 𝑥𝑡) with the knowledge of ℓ𝑡 (𝐴𝑡);
– 𝑥𝑡+1 = ΠΔ𝑛 (𝑥𝑡 − 𝜂 · ℓ̂𝑡).

It remains to bound E
[∑𝑇

𝑡=1⟨ℓ̂𝑡 , 𝑥𝑡 − e𝑗 ⟩
]
for any 𝑗 ∈ [𝑛]. We have

E

[
𝑇∑
𝑡=1

⟨ℓ̂𝑡 , 𝑥𝑡 − e𝑗 ⟩
]
= E

[
𝑇∑
𝑡=1

⟨ℓ̂𝑡 , (1 − 𝛼) · 𝑥𝑡 + 𝛼 · u − e𝑗 ⟩
]

≤ E

[
𝑇∑
𝑡=1

⟨ℓ̂𝑡 , 𝑥𝑡 − e𝑗 ⟩
]
+ 𝛼 · E

[
𝑇∑
𝑡=1

⟨ℓ̂𝑡 , u⟩
]

≤ 1
2𝜂

+ 𝜂

2

𝑇∑
𝑡=1

E

[
𝑛∑
𝑖=1

𝑥𝑡 (𝑖) ·
(
ℓ𝑡 (𝑖)
𝑥𝑡 (𝑖)

)2]
+ 𝛼 ·𝑇

≤ 1
2𝜂

+ 𝜂𝑛2𝑇

2𝛼
+ 𝛼 ·𝑇

= 3 · 4− 1
3 · (𝑛𝑇) 2

3

by choosing 𝜂 = 4
1
3
2 (𝑛𝑇)− 2

3 and 𝛼 =
(
𝑛2

4𝑇

) 1
3 .

The dependency of the bound on 𝑇 is 𝑇
2
3 , which is worse than the full

information case where the dependency is 𝑇
1
2 .

In fact, using a more sophisticated gradient based algorithm, we can
match the 𝑇

1
2 bound in the bandit case. We will introduce online stochastic

mirror descent in the next lecture.

3 Online Shortest Paths

Given a directed graph 𝐺 = (𝑉 , 𝐸) and two vertices 𝑢, 𝑣 ∈ 𝑉 , consider the
following 𝑇 -rounds game: In round 𝑡 = 11, . . . ,𝑇 ,

• The player picks a path 𝑃 ∈ P𝑢,𝑣 , where P𝑢,𝑣 is the set of all (simple)
paths from 𝑢 to 𝑣 ;

• The adversary picks a weight function𝑤𝑡 : 𝐸 → ℝ;

• The player pays ℓ𝑡 (𝑃) ≜
∑

𝑒∈𝑃 𝑤 (𝑒).

The regret is
∑𝑇

𝑡=1 ℓ𝑡 (𝑃) − ℓ𝑡 (𝑃∗) where 𝑃∗ = argmin𝑃∈P𝑢,𝑣

∑𝑇
𝑡=1 ℓ𝑡 (𝑃).

One can treat each path in P𝑢,𝑣 as an expert and reduce the problem of
learning with expert advice we studied before. However, the number of paths

[cs3958: lecture 8] learning with expert advice, online stochastic gradient descent 5

in P𝑢,𝑣 can be exponential in the size of the graphs and thus the reduction is
computational infeasible.

Since our strategies in learning with expert advice are distributions over
experts, one can use the following more efficient way to encode distribu-
tions on P𝑢𝑣 . A probability flow from 𝑢 to 𝑣 is a function

𝑝 : 𝐸 → 0, 1] such that for any 𝑥 ∈
𝑉 \ {𝑢, 𝑣},∑

𝑦:(𝑥,𝑦) ∈𝐸
𝑝 (𝑥, 𝑦) =

∑
𝑦:(𝑦,𝑥) ∈𝐸

𝑝 (𝑦, 𝑥)

and ∑
𝑦:(𝑢,𝑦) ∈𝐸

𝑝 (𝑢, 𝑦) =
∑

𝑦:(𝑦,𝑣) ∈𝐸
𝑝 (𝑦, 𝑣) = 1.

For each vertex 𝑥 , it induces a distribution
𝑝 (𝑥, ·) over its out-neighbours in the way
that

∀(𝑥, 𝑦) ∈ 𝐸 : 𝑝 (𝑥, 𝑦) = 𝑝 (𝑥, 𝑦)∑
𝑧:(𝑥,𝑧) ∈𝐸 𝑝 (𝑥, 𝑧) .

This further induce a distribution P𝑢,𝑣 such
that Pr [𝑃] = ∏

𝑒∈𝑃 𝑝 (𝑒) .

The distribution is encoded by a probability flow from 𝑢 to 𝑣 . LetP
denote the collection of all probability flow (which is convex). Then the
expected cost at each round is

∑
𝑒∈𝐸 𝑝 (𝑒) ·𝑤𝑡 (𝑒) . We can now apply OSGD.

	Learning with Expert Advice
	Online Stochastic Gradient Descent
	Online Shortest Paths

