
[CS3958: Lecture 7] Convex Optimization
Instructor: Chihao Zhang, Scribed by Yulin Wang

November 25, 2022

1 Convex Optimization

In the following, we will review some background of convex optimization
and examine the classic gradient descent algorithm. In convex optimization,
one is asked to solve the following problem

min 𝑓 (𝑥) s.t. 𝑥 ∈ 𝑉 ⊆ ℝ𝑛

where 𝑓 : ℝ𝑛 → ℝ is a convex function and 𝑉 is a convex set.
Recall that we say 𝑉 ⊆ ℝ𝑛 is convex if ∀𝑥,𝑦 ∈ 𝑉 and 𝜆 ∈ [0, 1], it holds

that 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑉 . A function 𝑓 : ℝ𝑛 → ℝ is convex if its epigraph,
namely the set epi(𝑓 ) =

{
(𝑥,𝑦) ∈ ℝ𝑛+1 �� 𝑦 ≥ 𝑓 (𝑥)

}
, is a convex set.

𝑒𝑝𝑖 (𝑓 )

We will make use of the following useful properties of a convex function
𝑓 .

• (The Jensen’s inequality) For any 𝑥,𝑦 ∈ dom(𝑓 ) and 𝜆 ∈ [0, 1], 𝑓 (𝜆𝑥 +
(1 − 𝜆)𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦). In particular 𝑓 (E [𝑋 ]) ≤ E [𝑓 (𝑋 )].

𝑥 𝑦𝜆𝑥 + (1 − 𝜆)𝑦

𝜆𝑓 (𝑥 ) + (1 − 𝜆) 𝑓 (𝑦)
• (Taylor expansion with Lagrange remainder) If 𝑓 ∈ 𝐶2, then

𝑓 (𝑦) = 𝑓 (𝑥) + ∇𝑓 (𝑥)T (𝑦 − 𝑥) + 1
2
(𝑦 − 𝑥)T∇2 𝑓 (𝜉) (𝑦 − 𝑥),

for some 𝜉 on the line connecting 𝑥 and 𝑦. Moreover, 𝑓 is convex is
equivalent to the fact that ∇2 𝑓 (𝑧) ⪰ 0 for any 𝑧 ∈ dom𝑓 .

• (The first order optimality condition)

𝑥∗ = argmin
𝑥

𝑓 (𝑥) ⇐⇒ ∇𝑓 (𝑥∗) = 0;

𝑥∗ = argmin
𝑥∈𝑉

𝑓 (𝑥) ⇐⇒ ∀𝑦 ∈ 𝑉 ,∇𝑓 (𝑥∗)T (𝑦 − 𝑥∗) ≥ 0.

1.1 The Gradient Descent Algorithm

We first assume the optimization problem is unconstrained, namely 𝑉 = ℝ𝑛 .
We also assume the existence of a first order oracle for the function 𝑓 , that
is, given any 𝑥 ∈ ℝ𝑛 , we can get the value of ∇𝑓 (𝑥). Then the gradient
descent algorithm is simply the following updating rule:

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ),

where 𝜂 > 0 is the step size.
Let 𝑥∗ = argmin𝑥 𝑓 (𝑥). Why −∇𝑓 (𝑥𝑡 ) is a good direction towards 𝑥∗. It

follows from the convexity of 𝑓 that

−∇𝑓 (𝑥𝑡 ) (𝑥∗ − 𝑥𝑡 ) ≥ 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗) ≥ 0



[cs3958: lecture 7] convex optimization 2

as long as 𝑥𝑡 is not at 𝑥∗. Therefore, moving along −∇𝑓 (𝑥𝑡 ) should make
progress.

𝑥𝑡

𝑥∗𝑥𝑡+1

𝑥∗ − 𝑥𝑡−∇𝑓 (𝑥𝑡 ) 𝜃

𝜃 ≤ 𝜋
2

We now quantitatively calculate the progress. Let 𝜙 (𝑥) := 1
2 ∥𝑥 − 𝑥∗∥2 be

a potential function to measure the distance between 𝑥 and 𝑥∗. Then

𝜙 (𝑥𝑡+1) − 𝜙 (𝑥𝑡 ) =
1
2
(⟨𝑥𝑡+1 − 𝑥∗, 𝑥𝑡+1 − 𝑥∗⟩ − ⟨𝑥𝑡 − 𝑥∗, 𝑥𝑡 − 𝑥∗⟩)

=
1
2
(⟨𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ) − 𝑥∗, 𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ) − 𝑥∗⟩ − ⟨𝑥𝑡 − 𝑥∗, 𝑥𝑡 − 𝑥∗⟩)

= −𝜂⟨∇𝑓 (𝑥𝑡 ), 𝑥𝑡 − 𝑥∗⟩ + 1
2
𝜂2∥∇𝑓 (𝑥𝑡 )∥2

≤ 𝜂 (𝑓 (𝑥∗) − 𝑓 (𝑥𝑡 )) +
1
2
𝜂2∥∇𝑓 (𝑥𝑡 )∥2,

where the last inequality follows from the convexity of 𝑓 .
Summing up above for 𝑡 = 0, 1, . . . ,𝑇 − 1, we obtain

𝜙 (𝑥𝑇 ) − 𝜙 (𝑥0) ≤
1
2
𝜂2

𝑇−1∑
𝑡=0

∥∇𝑓 (𝑥𝑡 )∥2 − 𝜂
𝑇−1∑
𝑡=0

(𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗)) .

Rearranging yields

𝑇−1∑
𝑡=0

(𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗)) ≤ 𝜙 (𝑥0) − 𝜙 (𝑥𝑇 )
𝜂

+ 𝜂

2

𝑇−1∑
𝑡=0

∥∇𝑓 (𝑥𝑡 )∥2. (1)

The bound (1) is important and informative. We further explain and
discuss some of its extension below.

Averaging

If we divide 𝑇 on both sides of (1), it becomes to

1
𝑇

𝑇−1∑
𝑡=0

(𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗)) ≤ 𝜙 (𝑥0) − 𝜙 (𝑥𝑇 )
𝜂𝑇

+ 𝜂

2𝑇

𝑇−1∑
𝑡=0

∥∇𝑓 (𝑥𝑡 )∥2.

The LHS of above is the average gap between the function value on
points found so far and the minimum function value, which goes to 0 when
𝑇 tends to infinity (assuming other quantities is bounded). This indeed
provides us a point whose function value is close to the minimum, since by
the convexity of 𝑓 :

𝑓

(
1
𝑇

𝑇−1∑
𝑡=0

𝑥𝑡

)
− 𝑓 (𝑥∗) ≤ 1

𝑇

𝑇−1∑
𝑡=0

𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗) .

One may expect that ∥𝑥𝑡 − 𝑥∗∥ is decreasing in 𝑡 . However, this is not true
in general.

Lipschitzness of 𝑓

The gradient descent may not converge if the derivative of 𝑓 is unbounded.
Therefore, we usually assume 𝑓 is 𝐿-Lipschitz, meaning ∥∇𝑓 ∥ ≤ 𝐿. Then (1)



[cs3958: lecture 7] convex optimization 3

becomes to

𝑇−1∑
𝑡=0

(𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗)) ≤ 𝜙 (𝑥0) − 𝜙 (𝑥𝑇+1)
𝜂

+ 𝜂

2

𝑇−1∑
𝑡=0

∥∇𝑓 (𝑥𝑡 )∥2

≤ ∥𝑥0 − 𝑥∗∥2
2𝜂

+ 𝜂𝑇

2
𝐿2

≤ ∥𝑥0 − 𝑥∗∥ · 𝐿
√
𝑇,

by choosing 𝜂 = ∥𝑥0−𝑥∗ ∥
𝐿
√
𝑇

.

Constrained Case

The above analysis is for unconstrained optimization. If we require 𝑥 ∈ 𝑉

for some closed convex set 𝑉 , then we need to modify the updating rule of
the gradient descent algorithm to

𝑥𝑡+1 = Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )) .

where Π𝑉 (·) is the projection operator satisfying Π𝑉 (𝑦) = argmin𝑥∈𝑉 ∥𝑥 −
𝑦∥. The algorithm is therefore called projected gradient descent (PGD).

The bound (1) still holds for PGD. To see this, we only needs to verify
that

𝜙 (Π𝑉 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 ))) ≤ 𝜙 (𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑡 )) , (2)

then every step in the analysis of GD still holds.
𝑥𝑡+1

𝑦

𝑥𝑡 𝑥∗As illustrated above, (2) is equivalent to ∥𝑥𝑡+1 − 𝑥∗∥2 ≤ ∥𝑦 − 𝑥∗∥2.
Note that by the definition of the projection, 𝑥𝑡+1 = argmin𝑥∈𝑉 𝑔(𝑥) for
𝑔(𝑥) = ∥𝑥 − 𝑦∥2. Therefore, by the first order optimality condition, we have
⟨𝑥∗ − 𝑥𝑡+1,∇𝑔(𝑥𝑡+1)⟩ > 0, which is equivalent to ⟨𝑦 − 𝑥𝑡+1, 𝑥∗ − 𝑥𝑡+1⟩ ≤ 0.

On the other hand, we have

∥𝑦 − 𝑥∗∥2 = ∥𝑦 − 𝑥𝑡+1 + 𝑥𝑡+1 − 𝑥∗∥2

= ⟨𝑦 − 𝑥𝑡+1 + 𝑥𝑡+1 − 𝑥∗, 𝑦 − 𝑥𝑡+1 + 𝑥𝑡+1 − 𝑥∗⟩
= ∥𝑦 − 𝑥𝑡+1∥2 + ∥𝑥𝑡+1 − 𝑥∗∥2 − 2⟨𝑦 − 𝑥𝑡+1, 𝑥

∗ − 𝑥𝑡+1⟩
≥ ∥𝑥𝑡+1 − 𝑥∗∥2 .

1.2 Online Gradient Descent

Recall the setting of online learning. Let 𝑉 ⊆ ℝ𝑑 be the action space. The
game lasts for 𝑇 rounds, for each 𝑠 = 0, 1, . . . ,𝑇 − 1,

• The player picks some 𝑥𝑠 ∈ 𝑉 ;

• The adversary picks some ℓ𝑠 : 𝑉 → ℝ;

• Pay the cost ℓ𝑠 (𝑥𝑠 ).



[cs3958: lecture 7] convex optimization 4

And our goal is to minimize
∑𝑇−1

𝑡=0 ℓ𝑡 (𝑥𝑡 ) −
∑𝑇−1

𝑡=0 ℓ𝑡 (𝑥∗).
The online projected gradient descent (OPGD) algorithm is the following

rule to pick 𝑥𝑠 :
𝑥𝑠+1 = 𝑥𝑠 − 𝜂𝑠∇ℓ𝑡 (𝑥𝑠 ) .

We can easily apply our previous analysis for gradient descent to this
online version and obtain a similar regret bound. However, here we use a
continuous approach to study it, and hopefully, get more intuition on why
the bound is of that form.

To analyze the algorithm, we define a continuous version of it. We first fix
some notations.

• For every 𝑠 = 0, 1, . . . ,𝑇 , T𝑠 :=
∑𝑠−1

𝑖=0 𝜂𝑖 ;

• For every 0 ≤ 𝑡 ≤ T𝑇 , we let 𝑠𝑡 be the unique integer 𝑠 satisfying
T𝑠 ≤ 𝑡 < T𝑠+1.

• For every 0 ≤ 𝑡 ≤ T𝑇 , let 𝑔𝑡 = ∇ℓ𝑠𝑡 (𝑥𝑠𝑡 ) and 𝜂𝑡 = ℓ𝑠𝑡 .

A continuous version of the algorithm is

• 𝑦0 = 𝑥0;

• d𝑦𝑡
d𝑡 = −𝑔𝑡 .

It is not hard to verify that:

Proposition 1 𝑥𝑠 = 𝑦T𝑠

Consider the function 𝜙 (𝑦) = 1
2 ∥𝑦 − 𝑥∗∥2. We can compute

d
d𝑡
𝜙 (𝑦𝑡 ) = ⟨𝑦𝑡 − 𝑥∗,

d
d𝑡
𝑦𝑡 ⟩ = ⟨𝑦𝑡 − 𝑥∗,−𝑔𝑡 ⟩.

For every 𝑠 = 0, 1, . . . ,𝑇 − 1, integrate from T𝑠 to T𝑠+1:

𝜙 (𝑦T𝑠+1 ) − 𝜙 (𝑦T𝑠 ) =
∫ T𝑠+1

T𝑠
⟨𝑦𝑡 − 𝑥∗,−𝑔𝑡 ⟩d𝑡 .

Summing up above for 𝑠 = 0, 1, . . .𝑇 − 1 and noting that T0 = 0, we have∫ T𝑇

0
⟨𝑔𝑡 , 𝑦𝑡 − 𝑥∗⟩d𝑡 = 𝜙 (𝑦0) − 𝜙 (𝑦T𝑇 ).

Remember that we aim at analyzing the discrete process, and so we
will compare

∑𝑇−1
𝑠=0 𝜂𝑠 ⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠⟩ with

∫ T𝑇
0 ⟨𝑔𝑡 , 𝑦𝑡 ⟩d𝑡 . For every fixed 𝑠 =

0, 1, . . . ,𝑇 − 1, noting that for all 𝑡 ∈ [T𝑠 ,T𝑠+1], it holds 𝑔𝑡 = ∇ℓ𝑠 (𝑥𝑠 ).



[cs3958: lecture 7] convex optimization 5

Therefore we have

𝜂𝑠 ⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠⟩ −
∫ T𝑠+1

T𝑠
⟨𝑔𝑡 , 𝑦𝑡 ⟩d𝑡 =

∫ T𝑠+1

T𝑠
⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠 − 𝑦𝑡 ⟩d𝑡

=
∫ T𝑠+1

T𝑠
⟨∇ℓ𝑠 (𝑥𝑠 ), (𝑡 − T𝑠 )∇ℓ𝑠 (𝑥𝑠 )⟩d𝑡

= ∥∇ℓ𝑠 (𝑥𝑠 )∥2
∫ T𝑠+1

T𝑠
(𝑡 − T𝑠 )d𝑡

=
𝜂2𝑠 · ∥∇ℓ𝑠 (𝑥𝑠 )∥2

2
.

This is equivalent to

⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠 − 𝑥∗⟩ = 𝜙 (𝑥𝑠 ) − 𝜙 (𝑥𝑠+1)
𝜂𝑠

+ 𝜂𝑠 ∥∇ℓ𝑠 (𝑥𝑠 )∥2
2

.

The regret bound follows from the convexity of ℓ𝑠

ℓ𝑠 (𝑥𝑠 ) − ℓ𝑠 (𝑥∗) ≤ ⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠 − 𝑥∗⟩ ≤ 𝜙 (𝑥𝑠 ) − 𝜙 (𝑥𝑠+1)
𝜂𝑠

+ 𝜂𝑠 ∥∇ℓ𝑠 (𝑥𝑠 )∥2
2

.

If we take all 𝜂𝑠 to be 𝜂, and assume ℓ is 𝐿-Lipschitz, the regret bound turns
into

𝑇−1∑
𝑠=0

𝜙 (𝑥𝑠 ) − 𝜙 (𝑥𝑠+1)
𝜂𝑠

+ 𝜂𝑠 ∥∇ℓ𝑠 (𝑥𝑠 )∥2
2

≤ diam(𝑉 ) · 𝐿 ·
√
𝑇,

which is much worse than the performance of FTL algorithm when applied
to the number guessing game.

Strongly Convex Function

In the above, we obtain the regret bound via the inequality

ℓ𝑠 (𝑥𝑠 ) − ℓ𝑠 (𝑥∗) ≤ ⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠 − 𝑥∗⟩

which follows from the convexity of ℓ𝑠 . The above inequality is tight when
ℓ𝑠 is linear. If the function is more convex than the linear function, we can
obtain stronger bounds.

We say a function 𝑓 : ℝ𝑛 → ℝ𝑛 is 𝜇-strongly convex if for every
𝑥,𝑦 ∈ ℝ𝑛 , it holds that

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇𝑓 (𝑥)T (𝑦 − 𝑥) + 𝜇

2
∥𝑦 − 𝑥 ∥2.

If ℓ𝑠 is 𝜇-strongly convex, then it holds that

ℓ𝑠 (𝑥𝑠 ) − ℓ𝑠 (𝑥∗) ≤ ⟨∇ℓ𝑠 (𝑥𝑠 ), 𝑥𝑠 − 𝑥∗⟩ − 𝜇

2
∥𝑥𝑠 − 𝑥∗∥2

≤ 𝜙 (𝑥𝑠 ) − 𝜙 (𝑥𝑠+1)
𝜂𝑠

+ 𝜂𝑠 ∥∇ℓ𝑠 (𝑥𝑠 )∥2
2

− 𝜇

2
∥𝑥𝑠 − 𝑥∗∥2

=

(
1
2𝜂𝑠

− 𝜇

2

)
∥𝑥𝑠 − 𝑥∗∥2 − 1

2𝜂𝑠
∥𝑥𝑠+1 − 𝑥∗∥2 + 𝜂𝑠

2
∥∇ℓ𝑠 (𝑥𝑠 )∥2



[cs3958: lecture 7] convex optimization 6

Summing over 𝑠 = 0, 1, . . . ,𝑇 − 1 yields

𝑇−1∑
𝑠=0

ℓ𝑠 (𝑥𝑠 ) − ℓ𝑠 (𝑥∗) ≤
(
1
2𝜂0

− 𝜇

2

)
∥𝑥0 − 𝑥∗∥2 − 1

2𝜂𝑇−1
∥𝑥𝑇 − 𝑥∗∥2

+
𝑇−1∑
𝑠=1

(
1
2𝜂𝑠

− 1
2𝜂𝑠−1

− 𝜇

2

)
∥𝑥𝑠 − 𝑥∗∥2 +

𝑇−1∑
𝑠=0

𝜂𝑠
2
∥∇ℓ𝑠 (𝑥𝑠 )∥2 .

Therefore, in order for the RHS to cancel out, we can set 1
𝜂𝑠

= 𝑠 · 𝜇 + 𝜇. Then
if all ℓ𝑠 are 𝐿-Lipschitz, then

𝑇−1∑
𝑠=0

ℓ𝑠 (𝑥𝑠 ) − ℓ𝑠 (𝑥∗) ≤
𝐿2

2𝜇
𝐻𝑇 .

Applying the bound to the number guessing game with quadratic loss
we met last week, we can match the performace of the follow-the-leader
algorithm.


	Convex Optimization
	The Gradient Descent Algorithm
	Online Gradient Descent


