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Today we will start a new topic – online optimization. We begin with a
classic problem called Multi-Armed Bandit (MAB).

1 The Problem Setting

Suppose there is a 𝑘-arm bandit, and the reward of each arm follows some
distribution 𝑓𝑖 ∈ [0, 1] with mean 𝜇𝑖 . We assume without loss of generality
that 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑘 . Now suppose you can pull the bandit for 𝑇
rounds and the goal is to obtain maximum reward in expectation. If we
know 𝜇1, . . . , 𝜇𝑘 well, the optimal strategy is to pull the arm 1 for 𝑇 times,
and the expected reward is 𝑇 𝜇1. However, in case that we do not know the
distribution, we have to design some strategy to explore the bandit first.

Denote by 𝑎𝑡 the arm pulled at the round 𝑡 , and thus we have the reward
in the 𝑡-th round 𝑋𝑡 ∼ 𝑓𝑎𝑡 . The regret of a strategy is defined as the gap
between 𝑇 𝜇1 and expected rewards of the strategy in 𝑇 rounds, namely the
regret of not always choosing the first arm: Note that in the expression above, the

randomness of the expectation E [ · ] usually
comes from two parts: the randomness
of the distributions 𝑓𝑖 and the (possible)
randomness of the strategy.

𝑅(𝑇 ) ≜ 𝑇 𝜇1 − E

[
𝑇∑
𝑡=1

𝑋𝑡

]
≥ 0.

For every 𝑖 ∈ [𝑘], we denote Δ𝑖 ≜ 𝜇1 − 𝜇𝑖 ≥ 0 as the gap between the reward
of the 𝑖-th arm and the optimal arm. The naive strategy that pulls each arm
for equal times is bad, since its regret 𝑅(𝑇 ) =

∑𝑘
𝑖=1 Δ𝑖

𝑘 ·𝑇 , which is linear in 𝑇 .
We consider a strategy/algorithm good if it holds that lim𝑇→∞ 𝑅(𝑇 )/𝑇 = 0
or equivalently 𝑅(𝑇 ) = 𝑜 (𝑇 ).

The following simple observation is useful when analyzing randomized
algorithms for MAB.

Proposition 1 For every 𝑡 ∈ [𝑇 ], let 𝑛𝑖 (𝑡) ≜
∑𝑡

𝑠=1 1[𝑎𝑠 = 𝑖] denote the
number of times that the arm 𝑖 is pulled in the first 𝑡 rounds. Then

𝑅(𝑇 ) =
𝑘∑
𝑖=2

Δ𝑖 · E [𝑛𝑖 (𝑇 )] .
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Proof.

𝑅(𝑇 ) = 𝑇 𝜇1 − E

[
𝑇∑
𝑡=1

𝑋𝑡

]
= 𝑇 𝜇1 −

𝑇∑
𝑡=1

E𝑎𝑡
[
𝜇𝑎𝑡

]
=

𝑇∑
𝑡=1

𝑘∑
𝑖=1

Δ𝑖 · E [1[𝑎𝑡 = 𝑖]]

=
𝑘∑
𝑖=1

Δ𝑖 · E
[

𝑇∑
𝑡=1

1[𝑎𝑡 = 𝑖]
]

=
𝑘∑
𝑖=1

Δ𝑖 · E [𝑛𝑖 (𝑇 )] .

We also write 𝑅𝑖 (𝑇 ) ≜ Δ𝑖 · E [𝑛𝑖 (𝑇 )] for every 𝑖 ∈ [𝑘], and then 𝑅(𝑇 ) =∑𝑘
𝑖=1 𝑅𝑖 (𝑇 ). □

2 The Explore-then-Commit (ETC) Algorithm

To get small regret, our strategy should identify the best arm as soon as
possible. The most straightforward way to find the best arm is to try each
arm a few times and pick the one with best empirical reward. The Explore-
then-Commit algorithm implements this idea: Pull every arm 𝑖 for 𝐿 times
(so 𝑘𝐿 times in total for exploration), and calculate 𝜇𝑖 (the average reward
gained in that 𝐿 times). After this, always pull the arm with greatest 𝜇𝑖 . We
can write its regret as

𝑅(𝑇 ) = 𝐿
𝑘∑
𝑖=1

Δ𝑖 +
𝑘∑
𝑖=2

Δ𝑖 ·
𝑇∑

𝑡=𝑘𝐿+1
Pr

[
𝜇𝑖 > max

𝑗≠𝑖
𝜇 𝑗

]
= 𝐿

𝑘∑
𝑖=1

Δ𝑖 +
𝑘∑
𝑖=2

Δ𝑖 · (𝑇 − 𝑘𝐿)Pr
[
𝜇𝑖 > max

𝑗≠𝑖
𝜇 𝑗

]
.

When 𝑖 ≠ 1,

Pr
[
𝜇𝑖 > max

𝑗≠𝑖
𝜇 𝑗

]
≤ Pr [𝜇𝑖 > 𝜇1] .

We bound above probability by concentration inequalities. To this end,
let 𝑋 𝑗 be the 𝑗-th reward of 𝑓𝑖 , 𝑌𝑗 be the 𝑗-th reward of 𝑓1. Let 𝑍 𝑗 = 𝑋 𝑗 − 𝑌𝑗 ∈
[−1, 1], then E

[
𝑍 𝑗

]
= −Δ𝑖 ≤ 0. Let 𝑍 =

∑𝐿
𝑗=1 𝑍 𝑗 , then E [𝑍 ] = −𝐿Δ𝑖 .

By Hoeffding’s Inequality,

Pr [𝜇𝑖 > 𝜇1] = Pr [𝑍 > 0] = Pr [𝑍 − E [𝑍 ] ≥ 𝐿Δ𝑖 ] ≤ exp

(
−2(𝐿Δ𝑖 )2∑𝐿

𝑗=1 22

)
= exp

(
−
𝐿Δ2

𝑖

2

)
.
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Therefore we have

𝑅(𝑇 ) ≤ 𝐿
𝑘∑
𝑖=1

Δ𝑖 + (𝑇 − 𝑘𝐿)
𝑘∑
𝑖=2

Δ𝑖 exp
(
−
𝐿Δ2

𝑖

2

)
≤

𝑘∑
𝑖=1

(
𝐿Δ𝑖 +𝑇Δ𝑖 exp

(
−
𝐿Δ2

𝑖

2

))
≤

𝑘∑
𝑖=1

(
𝐿 +𝑇Δ𝑖 exp

(
−
𝐿Δ2

𝑖

2

))
.

To further upper bound 𝑅(𝑇 ), we define

𝑔(𝐿,Δ𝑖 ) ≜ 𝐿 +𝑇Δ𝑖 exp
(
−
𝐿Δ2

𝑖

2

)
.

We would like to determine 𝐿 minimizing the upper bound of 𝑅(𝑇 )
among all possible Δ𝑖 , i.e., min𝐿 maxΔ𝑖 𝑅(𝑇 ). First we calculate maxΔ𝑖 𝑔(𝐿,Δ𝑖 ):

𝜕𝑔(𝐿,Δ𝑖 )
𝜕Δ𝑖

= 𝑇 (1 − 𝐿Δ2
𝑖 ) exp

(
−
𝐿Δ2

𝑖

2

)
.

We have 𝜕𝑔(𝐿,Δ𝑖 )
𝜕Δ𝑖

> 0 when 0 ≤ Δ𝑖 < 1√
𝐿
, and 𝜕𝑔 (𝐿,Δ𝑖 )

𝜕Δ𝑖
< 0 when

1 ≥ Δ𝑖 >
1√
𝐿
. Thus, for all 𝐿 > 1,

𝑔(𝐿,Δ𝑖 ) ≤ 𝑔(𝐿, 1
√
𝐿
) = 𝐿 + 𝑇𝑒−1/2

√
𝐿

.

Finally,

𝑅(𝑇 ) ≤
𝑘∑
𝑖=1

(𝐿 + 𝑇𝑒−1/2
√
𝐿

) = Θ(𝑘𝑇 2
3 ),

by setting 𝐿 = Θ(𝑇 2
3 ).

The Explore-then-Commit algorithm enjoys sublinear reget, which is
good, but still suboptimal. The main disadvantage is that it treats all arms
equally in the exploration step and pulls each of them for fixed 𝐿 times
regardless of the rewards already obtained.

3 The Upper Confidence Bounds (UCB) Algorithm

Therefore in order to overcome the weakness of ETC, during the explo-
ration phase, the algorithm should adaptively make use of the information
obtained so far. The brilliant idea of the UCB algorithm is to adaptively
maintain an interval [𝑎𝑖 , 𝑏𝑖 ] for each arm 𝑖 so that the mean 𝜇𝑖 is within the
interval with high probability based on the current knowledge on 𝜇𝑖 .

Now suppose you already know 𝜇𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ] for each arm 𝑖 ∈ [𝑘] with
high probability after some exploration, which arm will you pull now? The
name upper confidence bound means that we always choose the one with the
highest upper bound 𝑏𝑖 .

This sounds like you are walking on a snack street in a country that you
have never been to. There is a Chinese canteen, which you are very famil-
iar with. The food there is at least not bad, but can never be surprisingly
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wonderful. Besides, there is also a local canteen. As you have little idea
about the local food, it may taste horrible, but also has a possibility to have
a heavenly good taste. The upper confidence tells you to walk into the local
canteen, even with more risk to take an extremely bad dinner.

In order to implement the idea, we have to specify how to maintain the
an interval for each arm. Formally, for all 𝑡 ∈ [𝑇 ] and 𝑖 ∈ [𝑘], at round 𝑡
we not only track 𝜇𝑖 (𝑡), but also maintain an interval [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)] so that
𝜇𝑖 ∈ [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)] with probability no less than 1 − 𝛿𝑖 (𝑡) for some parameter
𝛿𝑖 (𝑡) to be chosen later. Let 𝑎𝑖 (𝑡) ≜ 𝜇𝑖 (𝑡) − 𝑐𝑖 (𝑡) and 𝑏𝑖 (𝑡) ≜ 𝜇𝑖 (𝑡) + 𝑐𝑖 (𝑡). Let
us see how to pick 𝑐𝑖 (𝑡). In the discussion below, we may drop 𝑡 if it is clear
from the context.

By Hoeffding’s inequality, 𝑐𝑖 should meet

Pr [|𝜇𝑖 − 𝜇𝑖 | > 𝑐𝑖 ] ≤ 2 exp
(
−2𝑛𝑖𝑐2𝑖

)
≤ 𝛿𝑖 ,

so we choose 𝑐𝑖 =
√

log(2/𝛿𝑖 )
2𝑛𝑖 .

Note that the upper bound 𝑏𝑖 = 𝜇𝑖 + 𝑐𝑖 can be large (which means that
we are more likely to explore the arm 𝑖) if either 𝜇𝑖 is large (so the 𝑖-th arm
is good), or 𝑛𝑖 is small (so the 𝑖-th arm is not well-explored).

Bounding the regret 𝑅(𝑇 )

For all 𝑖 ∈ [𝑘], the regret contributed by the arm 𝑖 is

𝑅𝑖 (𝑇 ) = Δ𝑖E [𝑛𝑖 (𝑇 )] ≤ Δ𝑖

𝑇∑
𝑡=1

Pr
[
𝜇𝑖 (𝑡) + 𝑐𝑖 (𝑡) ≥ max

𝑗≠𝑖
𝜇 𝑗 (𝑡) + 𝑐 𝑗 (𝑡)

]
.

The probability Pr
[
𝜇𝑖 (𝑡) + 𝑐𝑖 (𝑡) ≥ max𝑗≠𝑖 𝜇 𝑗 (𝑡) + 𝑐 𝑗 (𝑡)

]
can be controlled

only when each 𝜇𝑖 is in [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)]. Therefore, it is a common trick to
decompose the probability with this desired good event. We define events

A : Every 𝜇𝑖 is in its interval [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)] at any time;

B𝑖 (𝑡) : 𝜇𝑖 (𝑡) + 𝑐𝑖 (𝑡) ≥ max
𝑗≠𝑖

𝜇 𝑗 (𝑡) + 𝑐 𝑗 (𝑡) .

Thus,

𝑅𝑖 (𝑇 ) = Δ𝑖 ·
𝑇∑
𝑡=1

Pr [B𝑖 (𝑡)]

= Δ𝑖 ·
𝑇∑
𝑡=1

(
Pr [B𝑖 (𝑡) | A] Pr [A] + Pr

[
B𝑖 (𝑡)

��� A]
Pr

[
A

] )
≤ Δ𝑖 ·

(
𝑇∑
𝑡=1

Pr [B𝑖 (𝑡) | A] +
𝑇∑
𝑡=1

Pr
[
A

] )
.

We then bound
∑𝑇

𝑡=1 Pr
[
A

]
and

∑𝑇
𝑡=1 Pr [B𝑖 (𝑡) | A] respectively.
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• Note that A is the event “∃𝑡 ∈ [𝑇 ], ∃𝑖 ∈ [𝑘], 𝜇𝑖 ∉ [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)]”, by union
bound, we have

Pr
[
A

]
≤

𝑘∑
𝑖=1

𝑇∑
𝑡=1

𝛿𝑖 (𝑡).

Therefore if we choose 𝛿𝑖 (𝑡) = 1/𝑇 2 for all 𝑖 ∈ [𝑘] and 𝑡 ∈ [𝑇 ], then

𝑇∑
𝑡=1

Pr
[
A

]
≤ 𝑇 · 𝑘𝑇 · 1

𝑇 2 = 𝑘.

• Since conditioned on A, 𝜇𝑖 ∈ [𝑎𝑖 (𝑡), 𝑏𝑖 (𝑡)] for all 𝑖 ∈ [𝑘] and 𝑡 ∈ [𝑇 ], we
have 𝜇𝑖 (𝑡) + 𝑐𝑖 (𝑡) ≤ (𝜇𝑖 + 𝑐𝑖 (𝑡)) + 𝑐𝑖 (𝑡) = 𝜇𝑖 + 2𝑐𝑖 (𝑡)

𝜇1 (𝑡) + 𝑐1 (𝑡) ≥ (𝜇1 − 𝑐1 (𝑡)) + 𝑐1 (𝑡) = 𝜇1
.

Therefore 𝜇𝑖 + 2𝑐𝑖 (𝑡) ≤ 𝜇1 is a sufficient condition of B𝑖 (𝑡) not happening
conditioned on A. With 𝛿 = 1/𝑇 2, we have

𝐵𝑖 (𝑡) not happening conditioned on A ⇐= 𝜇𝑖 + 2𝑐𝑖 (𝑡) ≤ 𝜇1

⇐⇒

√
log(2/𝛿𝑖 (𝑡))

2𝑛𝑖 (𝑡)
≤ Δ𝑖

2

⇐⇒ 𝑛𝑖 (𝑡) ≥
4 log

(√
2𝑇

)
Δ2
𝑖

⇐= 𝑛𝑖 (𝑡) ≥
6 log𝑇
Δ2
𝑖

.

This indicates that if 𝑛𝑖 (𝑡) ≥ 6 log𝑇
Δ2
𝑖

, B𝑖 (𝑡) will never happen conditioned
on A. The fact implies that

𝑇∑
𝑡=1

Pr [B𝑖 (𝑡) | A] =
𝑇∑
𝑡=1

E [1[B𝑖 (𝑡)] | A] ≤ 6 log𝑇
Δ2
𝑖

.

So far we have found an upper bound for Pr [B𝑖 (𝑡) | A], but it may be very
large if Δ𝑖 is close to zero. However, remember that if Δ𝑖 is small, pulling
the 𝑖-th arm only causes little regret, and thus we can divide the 𝑘 arms
into two groups of Δ𝑖 ≤ Δ and Δ𝑖 > Δ for some threshold Δ. Then we can
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calculate the correspond regret separately as follows:

𝑅(𝑇 ) =
𝑘∑
𝑖=1

Δ𝑖E [𝑛𝑖 (𝑇 )]

=
∑

𝑖:Δ𝑖≤Δ
Δ𝑖E [𝑛𝑖 (𝑇 )] +

∑
𝑖:Δ𝑖≥Δ

Δ𝑖E [𝑛𝑖 (𝑇 )]

≤ 𝑇Δ +
∑

𝑖:Δ𝑖>Δ

Δ𝑖

(
6 log𝑇
Δ2
𝑖

+ 𝑘
)

≤ 𝑇Δ + 6𝑘 log𝑇
Δ

+ 𝑘2

= Θ(
√
𝑘𝑇 log𝑇 ),

by setting Δ =
√

6𝑘 log𝑇
𝑇 . This regret bound is optimal up to a

√
log𝑇 factor.
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