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1 Martingale(cont’d)

Here is an example to apply the Azuma-Hoeffding inequality we learnt last
time.

Example 1 (Balls-in-a-bag) There are 𝑔 green balls and 𝑟 red balls in a
bag and we want to estimate the ratio 𝑟

𝑟+𝑔 by drawing balls. There are two
scenarios.

• Draw balls with replacement. Let 𝑋𝑖 = 1[the 𝑖-th ball is red]. Let 𝑋 =∑𝑛
𝑖=1𝑋𝑖 . Then it is clear that each 𝑋𝑖 ∼ Ber

(
𝑟

𝑟+𝑔

)
and E [𝑋 ] = 𝑛 · 𝑟

𝑟+𝑏 .

Since all 𝑋𝑖s are independent, we can directly apply Hoeffding’s inequality
and obtain

Pr [|𝑋 − E [𝑋 ] | ≥ 𝑡] ≤ 2 exp
(
−2𝑡2

𝑛

)
.

• Draw balls without replacement. Again let 𝑋𝑖 = 1[the 𝑖-th ball is red],
then unlike the case of drawing with replacement, variables in {𝑋𝑖 } are
dependent. Let 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 . We first calculate E [𝑋 ].

For every 𝑖 ≥ 1, E [𝑋𝑖 ] is the probability that the 𝑖-th draw is a red ball.
Note that drawing without replacement is equivalent to first drawing a
uniform permutation of 𝑟 +𝑔 balls and drawing each ball one by one in that
order. Therefore, the probability of 𝑋𝑖 = 1 is 𝑟 · (𝑟+𝑔−1)!

(𝑟+𝑔)! = 𝑟
𝑟+𝑔 . So we have

E [𝑋 ] = 𝑛 · 𝑟
𝑟+𝑔 .

Next, we consider the concentration of 𝑋 . We apply Azuma-Hoeffding for a
certain martingale. Consider the 𝑛-ary function 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

∑𝑛
𝑖=1 𝑥𝑖

and the Doob sequence of 𝑓 . That is, let 𝑍𝑖 = E
[
𝑓 (𝑋𝑛)

��� 𝑋𝑖

]
, and then

we know {𝑍𝑖 }0≤𝑖≤𝑛 is a martingale. In order to satisfy the condition of
Azuma-Hoeffding, note that

𝑍𝑖 = (𝑍𝑖 − 𝑍𝑖−1) + (𝑍𝑖−1 − 𝑍𝑖−2) + · · · + (𝑍1 − 𝑍0) + 𝑍0 .

Let 𝑌𝑖 ≜ 𝑍𝑖 − 𝑍𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛, and thus

𝑍𝑛 − 𝑍0 = 𝑍𝑛 − E [𝑓 ] =
𝑛∑
𝑖=1

𝑌𝑖 .

In order to apply Azuma-Hoeffding, we need to bound |𝑌𝑖 | = |𝑍𝑖 − 𝑍𝑖−1 |. By
definition,

𝑍𝑖 − 𝑍𝑖−1 = E
[
𝑓 (𝑋𝑛)

��� 𝑋𝑖

]
− E

[
𝑓 (𝑋𝑛)

��� 𝑋𝑖−1
]
.
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If we use 𝑆𝑖 to denote the number of 1s among 𝑋𝑖 , namely 𝑆𝑖 =
∑𝑖

𝑗=1𝑋 𝑗 ,
then

E
[
𝑓 (𝑋𝑛)

��� 𝑋𝑖

]
= E

[
𝑓 (𝑋𝑛)

��� 𝑆𝑖 ] = 𝑆𝑖 + (𝑛 − 𝑖) · 𝑟 − 𝑆𝑖
𝑔 + 𝑟 − 𝑖

.

Therefore, 𝑆𝑖 = 𝑆𝑖−1 + 𝑋𝑖 and

𝑍𝑖 − 𝑍𝑖−1 =

(
𝑆𝑖 + (𝑛 − 𝑖) · 𝑟 − 𝑆𝑖

𝑔 + 𝑟 − 𝑖

)
−

(
𝑆𝑖−1 + (𝑛 − 𝑖 + 1) · 𝑟 − 𝑆𝑖−1

𝑔 + 𝑟 − 𝑖 + 1

)
=
𝑔 + 𝑟 − 𝑛

𝑔 + 𝑟 − 𝑖

(
𝑌𝑖 +

𝑆𝑖−1 − 𝑟

𝑔 + 𝑟 − 𝑖 + 1

)
.

Note that 𝑟 ≥ 𝑆𝑖−1 and 𝑔 ≥ (𝑖 − 1) − 𝑆𝑖−1, so we have

𝑍𝑖 − 𝑍𝑖−1 ≤
𝑔 + 𝑟 − 𝑛

𝑔 + 𝑟 − 𝑖

(
1 + 𝑆𝑖−1 − 𝑟

𝑔 + 𝑟 − 𝑖 + 1

)
≤ 𝑔 + 𝑟 − 𝑛

𝑔 + 𝑟 − 𝑖
≤ 1,

𝑍𝑖 − 𝑍𝑖−1 ≥
𝑔 + 𝑟 − 𝑛

𝑔 + 𝑟 − 𝑖

(
𝑆𝑖−1 − 𝑟

𝑔 + 𝑟 − 𝑖 + 1

)
≥ −𝑔 + 𝑟 − 𝑛

𝑔 + 𝑟 − 𝑖
≥ −1.

Therefore, −1 ≤ 𝑌𝑖 ≤ 1. And we can apply Azuma-Hoeffding to 𝑍𝑛 − 𝑍0 to
obtain

Pr [|𝑋 − E [𝑋 ] | ≥ 𝑡] ≤ 2 exp
(
− 𝑡2

2𝑛

)
.

1.1 McDiarmid’s Inequality

The Doob sequence we used in the Balls-into-Bags example is a very pow-
erful and general tool to obtain concentration bounds. For a model defined
by 𝑛 random variables 𝑋1, . . . , 𝑋𝑛 and any quantity 𝑓 (𝑋1, . . . , 𝑋𝑛) that we
want to estimate, we can apply the Azuma-Hoeffding inequality to the
Doob sequence of 𝑓 . As shown in the previous example, the quality of the
bound relies on the width of the martingale.

Let us first repeat the argument in the previous example. The Doob
sequence is 𝑍𝑖 = E

[
𝑓 (𝑋𝑛)

��� 𝑋𝑖

]
for every 0 ≤ 𝑖 ≤ 𝑛. For every 0 ≤ 𝑖 ≤ 𝑛, we

let
𝑆𝑖 = 𝑍𝑖 − 𝑍0 = (𝑍1 − 𝑍0) + · · · + (𝑍𝑖 − 𝑍𝑖−1) = 𝑋1 + · · · + 𝑋𝑖 ,

where 𝑋 𝑗 = 𝑍 𝑗 − 𝑍 𝑗−1. Then we apply Azuma-Hoeffding to 𝑆𝑛 = 𝑍𝑛 − 𝑍0 =

𝑓 (𝑋𝑛) − E
[
𝑓 (𝑋𝑛)

]
.

We need to determine the width of each 𝑋𝑖 . This is relatively easy if the
function 𝑓 and the variables {𝑋𝑖 }1≤𝑖≤𝑛 have certain nice properties.

Definition 1 (𝑐-Lipschitz function) A function 𝑓 (𝑥1, · · · , 𝑥𝑛) satisfies 𝑐-
Lipschitz condition if

∀𝑖 ∈ [𝑛],∀𝑥1, · · · , 𝑥𝑛,∀𝑦𝑖 : |𝑓 (𝑥1, · · · , 𝑥𝑖 , · · · , 𝑥𝑛) − 𝑓 (𝑥1, · · · , 𝑦𝑖 , · · · , 𝑥𝑛) | ≤ 𝑐.

The McDiarmid’s inequality is the application of Azuma-Hoeffding
inequality to Lipschitz 𝑓 and independent {𝑋𝑖 }.
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Theorem 2 (McDiarmid’s Inequality) Let 𝑓 be a 𝑐-Lipschitz function on 𝑛
variables and 𝑋1, · · · , 𝑋𝑛 be 𝑛 independent variables. Then we have

Pr [|𝑓 (𝑋1, · · · , 𝑋𝑛) − E [𝑓 (𝑋1, · · · , 𝑋𝑛)] | ≥ 𝑡] ≤ 2𝑒−
2𝑡2
𝑛𝑐2 .

Proof. We use 𝑓 and {𝑋𝑖 }𝑖≥1 to define a Doob martingale {𝑍𝑖 }𝑖≥1:

∀𝑖 : 𝑍𝑖 = E
[
𝑓 (𝑋𝑛)

��� 𝑋 𝑖

]
.

Let
𝑌𝑖 ≜ 𝑍𝑖 − 𝑍𝑖−1 = E

[
𝑓 (𝑋 )

��� 𝑋 𝑖

]
− E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1
]
.

Next we try to determine the width of 𝑌𝑖 . Clearly

𝑌𝑖 ≥ inf
𝑥

{
E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1, 𝑋𝑖 = 𝑥
]
− E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1
]}

,

and
𝑌𝑖 ≤ sup

𝑦

{
E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1, 𝑋𝑖 = 𝑦
]
− E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1
]}

.

The gap between the upper bound and the lower bound is

sup
𝑥,𝑦

{
E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1, 𝑋𝑖 = 𝑦
]
− E

[
𝑓 (𝑋 )

��� 𝑋 𝑖−1, 𝑋𝑖 = 𝑥
]}

.

For every 𝑥 , 𝑦 and 𝜎1, . . . , 𝜎𝑖−1,

E

[
𝑓 (𝑋 )

����� ∧
1≤ 𝑗≤𝑖−1

𝑋 𝑗 = 𝜎 𝑗 , 𝑋𝑖 = 𝑦

]
− E

[
𝑓 (𝑋 )

����� ∧
1≤ 𝑗≤𝑖−1

𝑋 𝑗 = 𝜎 𝑗 , 𝑋𝑖 = 𝑥

]
=

∑
𝜎𝑖+1,...,𝜎𝑛

(
Pr

[ ∧
𝑖+1≤ 𝑗≤𝑛

𝑋 𝑗 = 𝜎 𝑗

����� ∧
1≤ 𝑗≤𝑖−1

𝑋 𝑗 = 𝜎 𝑗 , 𝑋𝑖 = 𝑦

]
· 𝑓 (𝜎1, . . . , 𝜎𝑖−1, 𝑦, 𝜎𝑖+1, . . . , 𝜎𝑛)

− Pr

[ ∧
𝑖+1≤ 𝑗≤𝑛

𝑋 𝑗 = 𝜎 𝑗

����� ∧
1≤ 𝑗≤𝑖−1

𝑋 𝑗 = 𝜎 𝑗 , 𝑋𝑖 = 𝑥

]
· 𝑓 (𝜎1, . . . , 𝜎𝑖−1, 𝑥, 𝜎𝑖+1, . . . , 𝜎𝑛)

)
(♡)
=

∑
𝜎𝑖+1,...,𝜎𝑛

Pr

[ ∧
𝑖+1≤ 𝑗≤𝑛

𝑋 𝑗 = 𝜎 𝑗

]
· (𝑓 (𝜎1, . . . , 𝜎𝑖−1, 𝑦, 𝜎𝑖+1, . . . , 𝜎𝑛) − 𝑓 (𝜎1, . . . , 𝜎𝑖−1, 𝑥, 𝜎𝑖+1, . . . , 𝜎𝑛))

(♣)
≤ 𝑐.

where (♡) uses independence of {𝑋𝑖 } and (♣) uses the 𝑐-Lipsichitz property
of 𝑓 .

Applying Azuma-Hoeffding, we have

Pr [|𝑍𝑛 − 𝑍0 | ≥ 𝑡] = Pr [|𝑓 (𝑋1, · · · , 𝑋𝑛) − E [𝑓 (𝑋1, · · · , 𝑋𝑛)] | ≥ 𝑡] ≤ 2𝑒−
2𝑡2
𝑛𝑐2 .

□
Let us examine two applications of McDiarmid’s inequality.

Example 2 (Pattern Matching) Let 𝐵 ∈ {0, 1}𝑘 be a fixed string. For a
uniformly at random string 𝑋 ∈ {0, 1}𝑛 , what is the expected number of
occurrences of 𝐵 in 𝑋 ? For example, 1001 occurs 2 times in

1001001.
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We define 𝑛 independent random variables 𝑋1, · · · , 𝑋𝑛 , where 𝑋𝑖 denotes
𝑖-th character of 𝑋 . Let 𝑓 (𝑋1, · · · , 𝑋𝑛) be the number of occurrences of 𝐵 in 𝑋 .
Note that there are at most 𝑛−𝑘 +1 occurrences of 𝐵 in 𝑋 , and we can enumer-
ate the first position of each occurrence. Let 𝑌𝑖 ≜ 1[(𝑋𝑖 , 𝑋𝑖+1, . . . , 𝑋𝑖+𝑘−1) = 𝐵].
Then by the linearity of expectation, we have E [𝑌𝑖 ] = 1

2𝑘
for any 1 ≤ 𝑖 ≤ 𝑛 − 𝑘 + 1 since

𝑋𝑖 , 𝑋𝑖+1, . . . 𝑋𝑖+𝑘−1 are independent.

E [𝑓 ] =
𝑛−𝑘+1∑
𝑖=1

E [𝑌𝑖 ] =
𝑛 − 𝑘 + 1

2𝑘
.

We can then use McDiarmid’s inequality to show that 𝑓 is well-concentrated.
To see this, note that variables in {𝑋𝑖 } are independent and the function 𝑓 is
𝑘-Lipschitz: If we change one bit of 𝑋 , the number of occurrences changes at
most 𝑘 . Therefore,

Pr [|𝑍𝑛 − 𝑍0 | ≥ 𝑡] = Pr [|𝑓 − E [𝑓 ] | ≥ 𝑡] ≤ 2𝑒−
2𝑡2
𝑛𝑘2 .

Example 3 (Chromatic Number of G(𝑛, 𝑝)) Another application of McDi-
armid’s Inequality is to establish the concentration of chromatic number for
Erdős-Rényi random graphs G(𝑛, 𝑝). For a graph 𝐺 ∼ G(𝑛, 𝑝), we use 𝜒 (𝐺) Recall the notation G(𝑛, 𝑝) specifies a

distribution over all undirected simple
graphs with 𝑛 vertices. In the model,
each of the

(𝑛
2
)
possible edges exists with

probability 𝑝 independently.

to denote its chromatic number, i.e. the minimum number 𝑞 so that 𝐺 can be
properly colored using 𝑞 colors. There are different ways to represent 𝐺 using
random variables.

• The most natural way is to introduce a variable 𝑋𝑒 for every pair of vertices
𝑒 = {𝑢, 𝑣} ∈

(𝑉
2
)
where 𝑋𝑒 = 1[the edge 𝑒 exists in 𝐺]. Then {𝑋𝑒 }

(𝑉
2
)
here denotes all subset of𝑉 of size 2.

are independent and the chromatic number can be written as a function
𝜒 (𝐺) = 𝑓 (𝑋𝑒1 , 𝑋𝑒2 , . . . , 𝑋𝑒(𝑛2)

). It is easy to see that 𝜒 is 1-Lipschitz as
removing or adding one edge can only change the chromatic number by one
at most. So by McDiarmid’s inequality, we obtain that

Pr [|𝑓 − E [𝑓 ] | ≥ 𝑡] ≤ 2𝑒−2𝑡
2/(𝑛2) .

However, this bound is not satisfactory as we need to set 𝑡 = Θ(𝑛) in order
to upper bound the RHS by a constant.

• We can encode the graph 𝐺 in a more efficient way while reserving the
Lipschitz and the independence property. Suppose the vertex set of 𝐺 is
{𝑣1, . . . , 𝑣𝑛}. We define 𝑛 random variables 𝑌1, · · · , 𝑌𝑛 , where 𝑌𝑖 encodes
the edges between 𝑣𝑖 and {𝑣1, · · · , 𝑣𝑖−1}. Once 𝑌1, · · · , 𝑌𝑛 are given, the
graph is known, so the chromatic number can be written as a function
𝜒 (𝐺) = 𝑔(𝑌1, . . . , 𝑌𝑛). Since 𝑌𝑖 only involves the connections between 𝑣𝑖 and
𝑣1, · · · , 𝑣𝑖−1, {𝑌𝑖 } are independent.
It is also easy to see that 𝑔 is 1-Lipschitz as well since if 𝑌𝑖 changes, the
chromatic number changes by one at most. Applying McDiarmid’s inequal-
ity, we obtain that

Pr [|𝑔 − E [𝑔] | ≥ 𝑡] ≤ 2𝑒−
2𝑡2
𝑛 .
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2 Stopping Time

Suppose 𝑍0, 𝑍1, . . . , 𝑍𝑛, . . . is a martingale. We know that for any 𝑡 , E [𝑍𝑡 ] =
E [𝑍0]. However, does E [𝑍𝜏 ] = E [𝑍0] still hold if 𝜏 is a random variable?

Consider the following gambling strategy in a fair game. At the first
round, the gambler bet $1. Then he simply double his stake until he wins The stretagy was called martingale!

Let 𝜏 be the first time he wins. Then expected money he win at time 𝜏
is 1, which is not equal to 0, his initial money. In order to understand the
phenomenon, let us first formally introduce stopping time. • If 𝜏 = 1, he wins 1 dollar.

• If 𝜏 = 2, he wins −1 + 2 = 1 dollar.

• If 𝜏 = 3, he wins −1 − 2 + 4 = 1 dollar.

• . . .

Definition 3 (Stopping Time) Let 𝜏 ∈ ℕ∪ {∞} be a random variable. We say
𝜏 is a stopping time if for all 𝑡 ≥ 0, the event "𝜏 ≤ 𝑡" is F𝑡 -measurable.

For example, the first time that a gambler wins five games in a row is
a stopping time, since for a given 𝑡 , this can be determined by looking
at the outcomes of all the previous games, and therefore the time is F𝑡 -
measurable. However, the last time the gambler wins five games in a row is
not a stopping time, since determining whether the time is 𝑡 cannot be done
without knowing 𝑋𝑡+1, 𝑋𝑡+2, . . .

2.1 Optional Stopping Theorem(OST)

The optional stopping theorem provides sufficient condition for E [𝑍𝜏 ] =

E [𝑍0] to hold.

Theorem 4 (Optional Stopping Theorem) Let {𝑋𝑡 }𝑡 ≥0 be a martingale and
𝜏 be a stopping time with respect to {F𝑡 }𝑡 ≥0. Then E [𝑋𝜏 ] = E [𝑋0] if at least
one of the following conditions holds: 1. 𝜏 is bounded almost surely, that is,
∃𝑛 ∈ ℕ such that Pr [𝜏 ≤ 𝑛] = 1; 1. Pr [𝜏 < ∞] = 1, and there is a finite𝑀
such that |𝑋𝑡 | ≤ 𝑀 for all 𝑡 < 𝜏 ; or 1. E [𝜏] < ∞, and there is a constant 𝑐 such
that E [|𝑋𝑡+1 − 𝑋𝑡 | | F𝑡 ] ≤ 𝑐 for all 𝑡 < 𝜏 .

We will prove the theorem next time. Let us look back at the boy-or-girl
example mentioned in the first class.

Example 4 (Boy or Girl) Suppose there is a country in which people only
want boys. What is the sex ratio of the country in the following three scenar-
ios?

• Each family continues to have children until they have a boy.

• Each family continues to have children until there are more boys.

• Each family continues to have children until there are more boys or there
are 10 children.

We can model the problem as a random walk. Suppose there is a man walking
randomly on a one-dimensional axis. Let {𝑋𝑡 }𝑡 ≥0 be the positions of the man

https://en.wikipedia.org/wiki/Martingale_(betting_system)!
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at each time where 𝑋𝑡 stands for the number of boys minus the number
of girls in the first 𝑡 children of a family. Starting at 𝑋0 = 0, at time 0, the
man takes a step 𝑐𝑡 ∈R {−1, 1} and reach 𝑋𝑡+1, i.e., 𝑋𝑡+1 = 𝑋𝑡 + 𝑐𝑡 . It is
easy to verify that {𝑋𝑡 }𝑡 ≥0 is a martingale. The three scenarios mentioned
correspond to the following three different definitions of a stopping time 𝜏 . The
identity E [𝑋𝜏 ] = E [𝑋0] means that the sex ratio is balanced. We will check
respectively whether it is the case using OST.

• Let 𝜏 be the first time 𝑡 such that 𝑐𝑡 = 1. Then E [𝜏] < ∞ since by definition
𝜏 ∼ Geom

( 1
2
)
, and |𝑋𝑡+1 − 𝑋𝑡 | ≤ 1 for all 𝑡 < 𝜏 . Therefore from the 3rd

condition of OST we have E [𝑋𝜏 ] = E [𝑋0] = 0. In other words, if the man
stops at the first time of 𝑐𝑡 = 1, then the expected final position is 0.

• Let 𝜏 be the first time 𝑡 such that 𝑋𝑡 = 1, then of course E [𝑋𝜏 ] = 1 ≠

E [𝑋0]. This process is called “1-d random walk with one absorbing barrier”
and it is well-known that E [𝜏] = ∞. No condition in OST is satisfied. The property E [𝜏 ] = ∞ of the random

work is called “null recurrent”. You can find
more on this from my lecture on stochastic
processes.

• Let 𝜏 be the minimum between 10 and the first time 𝑡 such that 𝑋𝑡 = 1. In
this case, 𝜏 is at most 10, which satisfies the first condition of OST. Therefore
we have E [𝑋𝜏 ] = E [𝑋0] = 0.
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