
[CS3958: Lecture 2] Concentration(cont’d), Matingale
Instructor: Chihao Zhang, Scribed by Yulin Wang

September 25, 2022

1 Concentration(cont’d)

1.1 Threshold Behavior of Random Graphs

The second moment method often refers to the use of variance (and hence
Chebyshev’s inequality) to analyze certain random structures. We demon-
strate the method to analyze the threshold behavior of Erdős-Rényi random
graphs. The notation 𝐺 (𝑛, 𝑝) specifies a distribution over all simple undi-
rected graphs with 𝑛 vertices, where each of the

(𝑛
2
)
possible edges appears

with probability 𝑝 independently. Therefore, the expected number of edges
in the graph is

(𝑛
2
)
𝑝 and the expected degree of each vertex is (𝑛 − 1)𝑝 .

For certain graph properties, random graphs establish the so-called
“threshold behavior”. That is, in the model 𝐺 (𝑛, 𝑝) it is often the case that
there is a threshold function 𝑟 such that: 𝑓 (𝑛) ≪ 𝑔 (𝑛) iff 𝑓 = 𝑜𝑛 (𝑔) , 𝑓 (𝑛) ≫ 𝑔 (𝑛)

iff 𝑔 (𝑛) ≪ 𝑓 (𝑛) .
• when 𝑝 ≪ 𝑟 (𝑛), almost no graph satisfies the desired property;

• when 𝑝 ≫ 𝑟 (𝑛) , almost every graph has the desired property.

Formally, we have

Definition 1 (Threshold function) Given a graph property 𝑃 , a function
𝑟 : ℕ → [0, 1] is called a threshold function if:

(a) if 𝑝 (𝑛) ≪ 𝑟 (𝑛), Pr𝐺∼𝐺 (𝑛,𝑝 (𝑛)) [𝐺 satisfies 𝑃] → 0 when 𝑛 → ∞;

(b) if 𝑝 (𝑛) ≫ 𝑟 (𝑛), Pr𝐺∼𝐺 (𝑛,𝑝 (𝑛)) [𝐺 satisfies 𝑃] → 1 when 𝑛 → ∞;

Next we will show that the property 𝑃 = “G contains a 4-clique” has the
threshold function 𝑛−

2
3 . A clique is a subset of vertices of an

undirected graph such that every two
distinct vertices in the clique are adjacent,
i.e., an induced complete subgraph.

Theorem 2 The property “𝐺 contains a 4-clique” has a threshold function
𝑛−

2
3 .

Proof. First we verify (𝑎) in Definition 1. For every 𝑆 ∈
( [𝑛]
4
)
, let 𝑋𝑆 be the

indicator of whether 𝑆 is a clique, i.e. For a vertex set 𝑆 , we use𝐺 [𝑆 ] to denote
the subgraph of𝐺 induced by 𝑆 , i.e.,
𝐺 [𝑆 ] =

(
𝑆, 𝐸 (𝐺) ∩

(𝑆
2
) )
.

𝑋𝑠 =
1, if 𝐺 [𝑆] is a clique,
0, otherwise.

Let 𝑋 =
∑

𝑆 ∈( [𝑛]
4 ) 𝑋𝑆 . Then 𝑋 is the total number of 4-cliques in 𝐺 . So 𝐺

satisfies 𝑃 iff 𝑋 > 0. By the linearty of expectation, we have

E [𝑋 ] =
∑

𝑆 ∈( [𝑛]
4 )

E [𝑋𝑆 ] =
(
𝑛

4

)
𝑝6 ≈ 𝑛4𝑝6

24
.
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Therefore, E [𝑋 ] = 𝑜 (1) when 𝑝 ≪ 𝑛
−2
3 . Since 𝑋 is a non-negative random

variable, it follows by Markov inequality that Pr [𝑋 ≥ 1] ≤ 𝑜 (1).
However, we could not use the same argument to prove (𝑏), because in

general, large expectation of a random variable does not imply large values
with high probability. It is possible that almost all graphs contains no 4-
clique but a small fraction of graphs contain a large number of 4-cliques,
so that the expectation overall is large. Therefore, we have to consider the
variance. First notice that

Pr [𝑋 = 0] ≤ Pr [|𝑋 − E [𝑋 ] | ≥ E [𝑋 ]] ≤ Var [𝑋 ]
(E [𝑋 ])2 ,

where we apply Chebyshev’s inequality to obtain the last inequality. Now
we only need bound Var [𝑋 ].

Var [𝑋 ] = E

(∑

𝑆

𝑋𝑆

)2 −
(
E

[∑
𝑆

𝑋𝑆

])2
=

∑
𝑆≠𝑇

E [𝑋𝑆𝑋𝑇 ] +
∑
𝑆

E
[
𝑋 2
𝑆

]
−

∑
𝑆≠𝑇

E [𝑋𝑆 ] E [𝑋𝑇 ] −
∑
𝑆

E [𝑋𝑆 ]2

=
∑

|𝑆∩𝑇 |=2
(E [𝑋𝑆𝑋𝑇 ] − E [𝑋𝑆 ] E [𝑋𝑇 ])︸                                       ︷︷                                       ︸

𝐴

+
∑

|𝑆∩𝑇 |=3
(E [𝑋𝑆𝑋𝑇 ] − E [𝑋𝑆 ] E [𝑋𝑇 ])︸                                       ︷︷                                       ︸

𝐵

+
∑
𝑆

(
E

[
𝑋 2
𝑆

]
− E [𝑋𝑆 ]2

)
︸                       ︷︷                       ︸

𝐶

.

When |𝑆 ∩ 𝑇 | = 2, there are 11 potential edges in 𝑆 ∪ 𝑇 . Therefore, the When |𝑆 ∩𝑇 | = 0 or 1, 𝑋𝑆 and 𝑋𝑇 are inde-
pendent, so E [𝑋𝑆𝑋𝑇 ] = E [𝑋𝑆 ] E [𝑋𝑇 ].probability that both 𝑆,𝑇 induce 4-cliques is 𝑝11. We have

𝐴 ≤
∑

|𝑆∩𝑇 |=2
E [𝑋𝑆𝑋𝑇 ] =

(
𝑛

2

) (
𝑛 − 2
2

) (
𝑛 − 4
2

)
𝑝11 ≈ 𝑛6𝑝11.

Similarly, for |𝑆 ∩𝑇 | = 3, the probability that both 𝑆 an 𝑇 induce 4-cliques is
𝑝9, so it holds that

𝐵 ≤
∑

|𝑆∩𝑇 |=3
E [𝑋𝑆𝑋𝑇 ] =

(
𝑛

3

) (
𝑛 − 3
1

) (
𝑛 − 4
1

)
𝑝9 ≈ 𝑛5𝑝9.

We also have 𝐶 ≤ ∑
𝑆 E [𝑋𝑆 ] ≤ 𝑛4𝑝6. To sum up, since 𝑝 ≫ 𝑛−

2
3 , we have

Var [𝑋 ] ≤ 𝑛6𝑝11 + 𝑛5𝑝9 + 𝑛4𝑝6 = 𝑜 (E [𝑋 ]2).

Finally, we get Recall that E [𝑋 ]2 is Θ(𝑛8𝑝12) . Intuitively,
𝑛6𝑝11+𝑛5𝑝9+𝑛4𝑝6

𝑛8𝑝12
= 𝑛−2𝑝−1 + 𝑛−3𝑝−3 +

𝑛−4𝑝−6 ≪ 𝑛−4/3 + 𝑛−1 + 1 when 𝑝 ≫ 𝑛−
2
3 .Pr [𝑋 = 0] ≤ Var [𝑋 ]

E [𝑋 ]2
= 𝑜 (1).

□ It is a common skill to use linearity and
independence to simplify the estimation of
expectations or variances.
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1.2 Hoeffding’s Inequality

Recall that the convenient form of the Chernoff bound is: for any 0 < 𝛿 < 1,

Pr [𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp
{(
−𝛿

2

3
𝜇

)}
;

Pr [𝑋 ≤ (1 − 𝛿)𝜇] ≤ exp
{(
−𝛿

2

2
𝜇

)}
.

Example 1 (Tossing coins) Given a coin which show "head" with probability
𝑝 , we want to give an estimate 𝑝 of the value 𝑝 such that with high probability
(say 99%), 𝑝 ∈ [(1 − 𝜀)𝑝, (1 + 𝜀)𝑝]. Assume we toss the coin 𝑇 times. Let 𝑋
denote the total number of heads, and 𝑋𝑖 ∼ Ber(𝑝) be the indicator of whether
the 𝑖-th toss gives a head. Let 𝑝 = 𝑋

𝑇 be the estimate of 𝑝 . Then by Chernoff
bound, we have

Pr [|𝑝 − 𝑝 | ≥ 𝜀𝑝] = Pr [|𝑋 − 𝑝𝑇 | ≥ 𝜀𝑝𝑇 ] ≤ 2 exp
{(
−𝜀

2

3
· 𝑝𝑇

)}
≤ 0.01.

So it suffices to choose 𝑇 ≥ 3 log 200
𝜀2𝑝

= 𝑂
(
1
𝜀2

)
.

One of annoying restrictions of Chernoff bound is that each 𝑋𝑖 needs to be
a Bernoulli random variable. Hoeffding’s inequality generalizes Chernoff
bound by allowing 𝑋𝑖 to follow any distribution, provided its value is almost
surely bounded.

Theorem 3 (Hoeffding’s inequality) Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables where each 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ] for certain 𝑎𝑖 ≤ 𝑏𝑖 with probability 1.
Assume E [𝑋𝑖 ] = 𝑝𝑖 for every 1 ≤ 𝑖 ≤ 𝑛. Let 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 and 𝜇 ≜ E [𝑋 ] =∑𝑛

𝑖=1 𝑝𝑖 , then

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
− 2𝑡2∑𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖 )2

)
for all 𝑡 ≥ 0.

Proof. You can see the proof in the notes. □
It is instructive to compare Hoeffding and Chernoff when 𝑋𝑖 ’s are inde-
pendent Bernoulli variables. Formally, let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random vari-
ables where 𝑋𝑖 ∼ Ber(𝑝) for all 𝑖 = 1, . . . , 𝑛. Set 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 and denote

E [𝑋 ] = 𝑛𝑝 by 𝜇. For 𝑡 = 𝛿𝜇, by Hoeffding’s inequality, we have

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
−2𝛿2𝑝2𝑛

)
.

By Chernoff Bound, we have

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
−1
3
𝛿2𝑝𝑛

)
.

Comparing the exponent, it is easy to see that for 𝑝 > 1/6, Hoeffding’s
inequality is tighter up to a certain constant factor. However, for smaller

https://notes.sjtu.edu.cn/s/X8AFzs9rU
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𝑝 , Chernoff bound is significantly better than Hoeffding’s inequality, as its
dependency to 𝑝 is linear.

The following simple example demonstrates the difference. Suppose
we have a box of 𝑁 balls. Among them 𝑝𝑁 are red and (1 − 𝑝)𝑁 are blue.
We draw a random ball from this box, record its color and put it back. The
problem is in how many rounds we are sure about the value 𝑝 (which is the
percentage of red balls we record) we guess is within the range (1 ± 0.01)𝑝 .
The rounds required is Ω(1/𝑝) if we apply Chernoff bound, and Ω(1/𝑝2) if
we apply Hoeffding’s inequality.

Example 2 (Meal delivery) During the quarantine of our campus, the pro-
fessors deliver meals for students using their private cars or trikes. Then a
practical problem is how to estimate the amount of meals on a trike conve-
niently1. 1 See the news.

Assume we need to deliver 𝑛 > 200 packed meals and we do not know the
exact number 𝑛. Let 𝑋1, . . . , 𝑋𝑛 be a sequence of independent and identically
distributed random variables, representing the weight of each meal. For any 𝑖 ,
𝜇 = E [𝑋𝑖 ] = 300, and 𝑋𝑖 ∈ [250, 350]. We measure the total weight of 𝑛 meals
as 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 , then we can give an estimate of 𝑛 by �̂� = 𝑋

𝜇 . If we bound its
error by a constant 𝛿 , then by Hoeffding’s inequality, we have

Pr [|�̂� − 𝑛 | ≥ 𝛿𝑛] = Pr [|𝑋 − 𝜇𝑛 | ≥ 𝛿𝜇𝑛]

≤ 2 exp
{
− 2𝛿2𝜇2𝑛2∑𝑛

𝑖=1 (350 − 250)2

}
.

It follows that Pr [�̂� ∈ [0.95𝑛, 1.05𝑛]] ≥ 99.97% (𝛿 = 0.05).

2 Concentration on Martingales

In this section, we relax another restriction of Chernoff bound: the variables
need to be mutually independent. If you need to review probability theory, In this note, we use the notation 𝑋𝑖,𝑗 to

denote the sequence 𝑋𝑖 , . . . , 𝑋 𝑗 and 𝑋𝑖 to
denote the sequence 𝑋1, . . . , 𝑋𝑖 .

see the notes.

2.1 Martingales

The notion of martingale is used to describe fair games.

Example 3 (Fair games) Consider a gambler who wins 𝑋𝑡 dollars in the 𝑡-th
round of a sequence of bets. If in each round, the game is fair, then E [𝑋𝑡 ] = 0
regardless of the history. The variables {𝑋𝑡 } are not necessarily mutually
independent, but if we use 𝑍𝑡 =

∑𝑡
𝑖=0𝑋𝑡 to denote the amount of money he

won after 𝑡-th round, then clearly for every 𝑡 , it holds that

Proposition 4
E [𝑍𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = 𝑍𝑡 . (1)

https://mp.weixin.qq.com/s/rYYUDkiUycR1ICJj_WQXAw
http://chihaozhang.com/teaching/SP2022spring/notes/lec1.pdf
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Proof. Since 𝑍𝑡 is 𝜎 (𝑋0, . . . , 𝑋𝑡 )-measurable, we have

E
[
𝑍𝑡+1

��� 𝑋0,𝑡

]
= E

[
𝑍𝑡 + 𝑋𝑡+1

��� 𝑋0,𝑡

]
= 𝑍𝑡 + E

[
𝑋𝑡+1

��� 𝑋0,𝑡

]
= 𝑍𝑡

□
Taking expectation on the both sides of eq. (1), we have

E [𝑍𝑡+1] = E [𝑍𝑡 ] = · · · = E [𝑍0] = 𝑍0.

We use the property to define martingales, i.e., martingales are those
random processes satisfying Proposition 4.

Definition 5 In a probability space (Ω, F , Pr), a sequence of finite variables
{𝑍𝑛}𝑛≥0 is a martingale if

∀𝑛 ≥ 1, E [𝑍𝑛 | 𝑍1, . . . , 𝑍𝑛−1] = 𝑍𝑛−1.

Sometimes, we say {𝑍𝑛}𝑛≥0 is a martingale w.r.t another sequence {𝑋𝑛}𝑛≥0 if

∀𝑛 ≥ 1, E [𝑍𝑛 | 𝑋1, . . . , 𝑋𝑛−1] = 𝑍𝑛−1 .

More formally, if for every 𝑖 ≥ 1, there exists a 𝜎-algebra F𝑖 satisfying Recall that E [𝑍 | 𝑋 ] = E [𝑍 | 𝜎 (𝑋 ) ].
F1 ⊆ F2 ⊆ · · · ⊆ F and 𝑍𝑖 is F𝑖 -measurable, then we call {𝑍𝑛}𝑛≥0 a
martingale if

∀𝑛 ≥ 1, E [𝑍𝑛 | F𝑛−1] = 𝑍𝑛−1 .

Here the sequence {F𝑛}𝑛≥0 is called a filtration.
Similarly, we say {𝑍𝑛}𝑛≥0 a supermartingale if

∀𝑛 ≥ 1, E [𝑍𝑛 | F𝑛−1] ≤ 𝑍𝑛−1,

and a submartingale if

∀𝑛 ≥ 1, E [𝑍𝑛 | F𝑛−1] ≥ 𝑍𝑛−1 .

If {𝑍𝑛}𝑛≥0 is a martingale w.r.t. {𝑋𝑛}𝑛≥0, then the following property is
immediate.

Proposition 6 For any 𝑛 ≥ 1, E [𝑍𝑛] = E [𝑍0].

Example 4 (1-dim random walk) Consider the random walk on ℤ. One
starts at 0 and in each round he toss a fair coin to determine the direction of
moving distance 1. If we use 𝑋𝑡 ∈ {−1, 1} to denote the movement at time 𝑡 .
Let 𝑍𝑡 =

∑𝑡
𝑖=1𝑋𝑡 to denote the position at time 𝑡 , then 𝑍0 = 0. It is obvious that

𝑋1, 𝑋2 . . . are mutually independent random variables with 𝐸 [𝑋𝑡 ] = 0. Then
{𝑍𝑡 }𝑡 ≥1 is a martingale w.r.t. {𝑋𝑡 }𝑡 ≥1 since

E
[
𝑍𝑡

��� 𝑋 𝑡−1
]
= E

[
𝑍𝑡−1 + 𝑋𝑡

��� 𝑋 𝑡−1
]
= 𝑍𝑡−1 + E

[
𝑋𝑡

��� 𝑋 𝑡−1
]
= 𝑍𝑡−1 .
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Example 5 (The product of independent random variables) Assume that
𝑋1, . . . , 𝑋𝑛 are 𝑛 independent random variables with E [𝑋𝑖 ] = 1. Let 𝑃𝑘 =
𝑘∏
𝑖=1

𝑋𝑖 . Then {𝑃𝑖 }𝑖≥1 is a martingale w.r.t. {𝑋𝑖 }𝑖≥1 since

E
[
𝑃𝑖

��� 𝑋 𝑖−1
]
= E

[
𝑃𝑖−1 · 𝑋𝑖

��� 𝑋 𝑖−1
]
= 𝑃𝑖−1 · E

[
𝑋𝑖

��� 𝑋 𝑖−1
]
= 𝑃𝑖−1.

Example 6 (Pólya’s urn) Initially, there are only one white and one black
balls in the urn. In each round, we pick a ball uniformly at random from the
urn. And then we return the picked ball and add an additional ball with the
same color into the urn.

Let 𝑋𝑛 denote the number of black balls in the urn after 𝑛-th round. Define
𝑍𝑛 ≜

𝑋𝑛
𝑛 as the ratio of black balls after 𝑛-th round. Then {𝑍𝑛}𝑛≥2 is a

martingal w.r.t. {𝑋𝑛}𝑛≥2 since

E
[
𝑍𝑛+1

��� 𝑋2,𝑛

]
=

1
𝑛 + 1

E
[
𝑋𝑛+1

��� 𝑋2,𝑛

]
=

1
𝑛 + 1

E [𝑍𝑛 (𝑋𝑛 + 1) + (1 − 𝑍𝑛)𝑋𝑛]

=
𝑍𝑛 + 𝑋𝑛

𝑛 + 1
=
𝑋𝑛

𝑛
= 𝑍𝑛 .

Example 7 (Doob’s martingale) An important family of martingales is the
Doob Sequence. Let 𝑋1, . . . , 𝑋𝑛 be a sequence of (unnecessarily independent)
random variables and 𝑓 (𝑋𝑛) = 𝑓 (𝑋1, . . . , 𝑋𝑛) ∈ ℝ be a function. For 𝑖 ≥ 0, we
define

𝑍𝑖 = E
[
𝑓 (𝑋𝑛)

��� 𝑋 𝑖

]
.

In particular, we have 𝑍0 = E
[
𝑓 (𝑋𝑛)

]
and 𝑍𝑛 = 𝑓 (𝑋𝑛). In other words,

𝑍𝑛 is the value of the function given the input 𝑋𝑛 and 𝑍0 is the average of the
function value without any knowledge about the input. The sequence {𝑍𝑖 }𝑖≥0
can be viewed as an sequence estimation of the function value with more and
more information is revealed.

Proposition 7 {𝑍𝑛}𝑛≥0 is a martingale w.r.t. {𝑋𝑛}𝑛≥0.

Proof.

E
[
𝑍𝑖

��� 𝑋 𝑖−1
]
= E

[
E[𝑓 (𝑋𝑛)

��� 𝑋 𝑖 ]
��� 𝑋 𝑖−1

]
= E

[
𝑓 (𝑋𝑛)

��� 𝑋 𝑖−1
]
= 𝑍𝑖−1 .

□

2.2 Azuma-Hoeffding’s Inequality

With the knowledge of martingales, we are able to generalize Hoeffding’s
inequality:

Theorem 8 (Azuma-Hoeffding inequality) Suppose we have a series of ran-
dom variables {𝑋𝑛}𝑛≥1, which satisfy 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ]. Without loss of generality,
we assume E(𝑋𝑖 ) = 0. Otherwise, we can replace 𝑋𝑖 with 𝑋𝑖 − E(𝑋𝑖 ). Let
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𝑆𝑘 =
𝑘∑
𝑖=1

𝑋𝑖 . If {𝑆𝑛}𝑛≥0 where 𝑆𝑘 =
∑𝑘

𝑖=0𝑋𝑖 is a martingale w.r.t. {𝑋𝑛}𝑛≥0 with
𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ] with probability 1, then

Pr [|𝑆𝑛 − 𝑆0 | ≥ 𝑡] ≤ 2 exp
©«−

2𝑡2
𝑛∑
𝑖=1

(𝑏𝑖 − 𝑎𝑖 )2

ª®®®¬ .
Proof. The proof is quite similar to our proof of Hoeffding inequality. You
can see the proof in the notes. □

https://notes.sjtu.edu.cn/s/X8AFzs9rU
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