
[CS3958: Lecture 14] Graph Expansion(Cont’), Cheeger’s
Inequality
Instructor: Chihao Zhang, Scribed by Yulin Wang

January 1, 2023
Review: Different views of analyzing
mixing time/rate of convergence of Markov
Chains.

• Probabilistic view ∼ Coupling;

• Algebraic view ∼ Spectrum; (Algebraic
Graph Theory)

• Geometric view ∼ Expansion. (KLS
Conjecture)

1 Graph Expansion (Cont’)

Expansion can be defined on any weighted undirected graph, not only for
Markov chains: Let 𝐺 = (𝑉 , 𝐸) be a weighted undirected graph with a
weight function𝑤 (𝑖, 𝑗) > 0 for each edge {𝑖, 𝑗} ∈ 𝐸. Then we define the
expansion as

Φ(𝑆, 𝑆) =
∑

𝑖∈𝑆,𝑗∈𝑆 𝑤 (𝑖, 𝑗)∑
𝑖, 𝑗∈𝑆 𝑤 (𝑖, 𝑗) .

Note this definition is consistent with that of Markov chains. If we let
𝑃 (𝑖, 𝑗) = 𝑤 (𝑖, 𝑗 )∑

𝑗 𝑤 (𝑖, 𝑗 ) i.e. 𝑃 is a natural random walk on 𝐺 , then we have 𝜋 (𝑖) ∼∑
𝑗 𝑤 (𝑖, 𝑗) and 𝜋 (𝑖)𝑃 (𝑖, 𝑗) = 𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖). Therefore, the Markov chain 𝑃 can

imply some results on the expansion of 𝐺 .

1.1 Applications for Sampling Colorings

Assume we want to sample from all proper [𝑞]-colorings on 𝐺 = ([𝑛], 𝐸)
with maximum degree Δ. The Markov chain is

• Pick 𝑣 ∈ [𝑛] and 𝑐 ∈ [𝑞] uniformly at random.

• Recolor 𝑣 with 𝑐 if possible.

Recall that we proved 𝜏𝑚𝑖𝑥 (𝜀) ≤ 𝑞𝑛 log 𝑛
𝜀 when 𝑞 > 4Δ. Now we want to

argue that when 𝑞 is rather small, the expansion is large for some special
graph. Consider the case when 𝐺 is a star and 1 is the vertex at the center. If we want to upperbound Φ(𝑃 ) , we need

to argue that for any 𝑆 such that 𝜋 (𝑆 ) ≤ 1
2 ,

Φ(𝑆, 𝑆 ) has an upper bound.
The problem to find a cut 𝑆, 𝑆 with

maximum expansion is dual with multi-
commodity flow problem. If you are inter-
ested in this topic, search for "canonical
paths" or "multi-commodity flow".

Let 𝑍 be the number of all proper colorings on 𝐺 , and 𝑆 be the set of proper
colorings that the color of 1 is 1. Then we have

𝑄 (𝑆, 𝑆) =
∑

𝑖∈𝑆,𝑗∈𝑆
𝜋 (𝑖)𝑃 (𝑖, 𝑗)

= (𝑞 − 1) (𝑞 − 2)𝑛−1 1
𝑍 · 𝑛𝑞 .

Since |𝑆 | = (𝑞 − 1)𝑛−1, we have

Φ(𝑆) = 𝑄 (𝑆, 𝑆)
𝜋 (𝑆) =

(𝑞 − 2)𝑛−1
(𝑞 − 1)𝑛−2

1
𝑛𝑞

=
𝑞 − 1
𝑛𝑞

(
1 − 1

𝑞 − 1

)𝑛−2
≤ 1

𝑛
exp

(
−𝑛 − 2
𝑞 − 1

)
.

Therefore, 𝜏𝑚𝑖𝑥 = Ω
(
𝑛 · exp

(
𝑞−1
𝑛−2

))
, which means that when 𝑞 = 𝑜 ( 𝑛

log𝑛 ),
𝜏𝑚𝑖𝑥 is 𝑛𝜔 (1) .
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2 Cheeger’s Inequality

Sometimes it is more convenient to work with 𝐿 = 𝐼 − 𝑃 , the Laplacian of 𝑃 .
Then

𝐿 =
𝑛∑
𝑖=1

(1 − 𝜆𝑖 )v𝑖vT𝑖 Π.

For every 𝑖 = 1, 2, . . . , 𝑛, we use 𝛾𝑖 denote 1 − 𝜆𝑖 . Then 0 = 𝛾1 ≤ 𝛾2 ≤ · · · ≤
𝛾𝑛 ≤ 2 are the eigenvalues of 𝐿.

The Cheeger’s inequality is
𝛾2
2

≤ Φ(𝑃) ≤
√
2𝛾2 .

There are high-order Cheeger’s inequalities
indicating the relation between graph
expansion and 𝜆3, 𝜆4, . . . .

2.1 Proof of 𝛾2 ≤ 2Φ(𝑃)

Recall that
𝛾2 = min

2−dim𝑉 ⊆ℝ𝑛
max

𝑥∈𝑉 \{0}
𝑅𝐿 (x).

Therefore, in order to prove an upper bound for 𝛾2, it suffices to construct
some 2-dimensional space 𝑉 such that any nonzero x ∈ 𝑉 has small 𝑅𝐿 (x).

Suppose Φ(𝑃) = Φ(𝑆) for some 𝑆 ⊆ 𝑉 . Let 1𝑆 and 1𝑆 be the indicator
vector of 𝑆 and its complement 𝑆 respectively. Consider the space 𝑉 =

span(1𝑆 , 1𝑆 ). Then every x ∈ 𝑉 can be written as x = 𝑎1𝑆 + 𝑏1𝑆 for some
𝑎,𝑏 ∈ ℝ. We have

𝑅𝐿 (𝑎1𝑆 ) =
∑

𝑖∈𝑆,𝑗∈𝑆 𝜋 (𝑖)𝑃 (𝑖, 𝑗)
𝜋 (𝑆)

=

∑
𝑖∈𝑆,𝑗∈𝑆 Pr [𝑋𝑡 = 𝑖 ∧ 𝑋𝑡+1 = 𝑗]

𝜋 (𝑆)

=
Pr

[
𝑋𝑡 ∈ 𝑆 ∧ 𝑋𝑡+1 ∈ 𝑆

]
𝜋 (𝑆)

= Φ(𝑆).

Similarly, we have 𝑅𝐿 (𝑏1𝑆 ) = Φ(𝑆).
The inequality then follows from the following proposition:

Proposition 1 If at least one of x and y is not zero, then 𝑅𝐿 (x + y) ≤
2max {𝑅𝐿 (x), 𝑅𝐿 (y)}.

Assume x =
∑𝑛

𝑖=1 𝑎𝑖v𝑖 and y =
∑𝑛

𝑖=1 𝑏𝑖v𝑖 . Then

𝑅𝐿 (x + y) = ⟨x + y, 𝐿(x + y)⟩Π
⟨x + y, x + y⟩Π

=

∑𝑛
𝑖=1 (𝑎𝑖 + 𝑏𝑖 )2𝜆𝑖∑𝑛
𝑖=1 (𝑎𝑖 + 𝑏𝑖 )2

≤
2
∑𝑛

𝑖=1 (𝑎2𝑖 + 𝑏2𝑖 )𝜆𝑖∑𝑛
𝑖=1 𝑎

2
𝑖 + 𝑏2𝑖

≤ 2 ·max {𝑅𝐿 (x), 𝑅𝐿 (y)} .
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2.2 Proof of Φ(𝑃) ≤ √
2𝛾2

In order to prove an upper bound for Φ(𝑃), we give an approximation
algorithm to estimate Φ(𝑃) and the upper bound is a consequence of the
analysis of its performance. The algorithm is called Fiedler’s Algorithm: Our goal is to find (𝑆, 𝑆 ) such that Φ(𝑆 ) ∨

Φ(𝑆 ) ≤ √
2𝛾2.Input Ω and x ∈ ℝΩ .

• Sort Ω = {𝑣1, . . . , 𝑣𝑛} according to x (namely 𝑥 (𝑣1) ≤ 𝑥 (𝑣2) ≤ . . . );

• For every 𝑖 ∈ [𝑛], let 𝑆𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑖 };

• Return min𝑖∈[𝑛] Φ(𝑆𝑖 ) ∨ Φ(𝑆𝑖 ).

We prove the following stronger theorem:

Theorem 2 For all x ⊥ 1, let 𝑆 be the set returned by Fiedler’s algorithm on
the input x. Then

Φ(𝑆) ≤
√
2𝑅𝐿 (x).

The Cheeger’s inequality then follows by taking x = v2.
For simplicity, we assume Ω = [𝑛] and x(1) ≤ x(2) ≤ . . . here. To prove

the theorem, we first normalize the vector x. Let

ℓ ≜ min
𝑖∈[𝑛]

ℓ∑
𝑖=1

𝜋 (𝑖) ≥
𝑛∑

𝑖=ℓ+1
𝜋 (𝑖),

and for every 𝑖 ∈ [𝑛], let 𝑦𝑖 = 𝑥𝑖 − 𝑥ℓ . By the definition, 𝑦ℓ = 0 and 𝑦𝑖 ≤ 0 for
all 𝑖 ≤ ℓ , 𝑦𝑖 ≥ 0 for all 𝑖 ≥ ℓ .

We have the following proposition:

Proposition 3 𝑅𝐿 (x) ≥ 𝑅𝐿 (y).

To see why it holds, note that

𝑅𝐿 (x) =
∑

𝑖, 𝑗 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑥2𝑖 − 𝑥𝑖𝑥 𝑗 )
⟨x, x⟩Π

=

∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
𝑥𝑖 − 𝑥 𝑗

)2
⟨x, x⟩Π

.

Since y = x − 𝑦ℓ1 is obtained from x by substracting a constant multiples of
1, this operation does not change the numerator and increase the denomi-
nator (because x ⊥ 1). This can also be verified via direct calculation.

As a result, we only need to prove that Φ(𝑆) ≤
√
2𝑅𝐿 (y). We prove by

the probabilistic method. That is, we randomly choose some 𝑡 ∈ [𝑦1, 𝑦𝑛]
(following a certain tailored density) and consider the expected expansions
of Φ(𝑆𝑡 ) and Φ(𝑆𝑡 ) where 𝑆𝑡 ≜ {𝑖 ∈ [𝑛] | 𝑦𝑖 ≤ 𝑡}.

To this end, we can normalize y by dividing some constant and assume
without loss of generality that 𝑦21 + 𝑦2𝑛 = 1. We sample 𝑡 with density
𝑝 (𝑡) = 2|𝑡 |.

Note that for every 𝑡 ∈ [𝑦 (1), 𝑦 (𝑛)],

max
{
Φ(𝑆𝑡 ),Φ(𝑆𝑡 )

}
=

∑
𝑖∈𝑆𝑡 , 𝑗∈𝑆𝑡 𝜋 (𝑖)𝑃 (𝑖, 𝑗)

min
{
𝜋 (𝑆𝑡 ), 𝜋 (𝑆𝑡 )

} =:
𝐴

𝐵
.
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We calculate the expectations of the numerator and denominator respec-
tively.

E [𝐴] =
∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)Pr
[
𝑖 ∈ 𝑆𝑡 , 𝑗 ∈ 𝑆𝑡

]
=

∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
∫ 𝑦𝑖

𝑦 𝑗

2|𝑡 |d𝑡

=
∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
sgn(𝑦 𝑗 ) · 𝑦2𝑗 − sgn(𝑦𝑖 ) · 𝑦2𝑖

)
≤

∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
|𝑦𝑖 | +

��𝑦 𝑗

��) (𝑦 𝑗 − 𝑦𝑖
)

=
∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

(𝜋 (𝑖)𝑃 (𝑖, 𝑗)) 1
2
(
|𝑦𝑖 | +

��𝑦 𝑗

��) (𝜋 (𝑖)𝑃 (𝑖, 𝑗)) 1
2 (𝑦 𝑗 − 𝑦𝑖 )

(♡)
≤

©­­­«
∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
|𝑦𝑖 | +

��𝑦 𝑗

��)2ª®®®¬
1
2

·
©­­­«
∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
𝑦 𝑗 − 𝑦𝑖

)2ª®®®¬
1
2

≤
©­­­«2

∑
𝑖, 𝑗∈Ω
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
|𝑦𝑖 |2 +

��𝑦 𝑗

��2)ª®®®¬
1
2

·
√
⟨y, 𝐿y⟩Π

≤
√
2⟨y, y⟩Π ·

√
⟨y, 𝐿y⟩Π,

where (♡) is due to Cauchy-Schwarz. ⟨y, y⟩Π =
∑
𝑖,𝑗

𝜋 (𝑖 )𝑃 (𝑖, 𝑗 )𝑦2𝑖 ≥
∑
𝑖< 𝑗

𝜋 (𝑖 )𝑃 (𝑖, 𝑗 ) (𝑦2𝑖 +𝑦2𝑗 ) .
On the other hand, we have

E [𝐵] = E
[
min

{
𝜋 (𝑆𝑡 ), 𝜋 (𝑆𝑡 )

}]
= Pr [𝑡 < 0] E [𝜋 (𝑆𝑡 ) | 𝑡 < 0] + Pr [𝑡 ≥ 0] E

[
𝜋 (𝑆𝑡 )

��� 𝑡 > 0
]
.
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Note that

Pr [𝑡 < 0] E [𝜋 (𝑆𝑡 ) | 𝑡 < 0] = Pr [𝑡 < 0] · E
[

𝑛∑
𝑖=1

𝜋 (𝑖) · 1[𝑖 ∈ 𝑆𝑡 ]
����� 𝑡 < 0

]
= Pr [𝑡 < 0] ·

𝑛∑
𝑖=1

𝜋 (𝑖) · Pr [𝑖 ∈ 𝑆𝑡 | 𝑡 < 0]

=
𝑛∑
𝑖=1

𝜋 (𝑖) · Pr [𝑖 ∈ 𝑆𝑡 ∧ 𝑡 < 0]

=
𝑛∑
𝑖=1

𝜋 (𝑖)Pr [𝑦𝑖 ≤ 𝑡 < 0]

=
∑
𝑖≤ℓ

𝜋 (𝑖) ·
∫ 0

𝑦𝑖

2|𝑡 |d𝑡

=
ℓ∑

𝑖=1
𝜋 (𝑖)𝑦 (𝑖)2.

Similarly

Pr [𝑡 ≥ 0] E
[
𝜋 (𝑆𝑡 )

��� 𝑡 > 0
]
=

𝑛∑
𝑖=ℓ+1

𝜋 (𝑖)𝑦 (𝑖)2 .

Therefore,

E [𝐵] =
𝑛∑
𝑖=1

𝜋 (𝑖)𝑦 (𝑖)2 = ⟨y, y⟩Π .

Now we know that

E [𝐴]
E [𝐵] ≤

√
2⟨y, y⟩Π ·

√
⟨y, 𝐿y⟩Π

⟨y, y⟩Π
=
√
2𝑅𝐿 (y) ≤

√
2𝑅𝐿 (x).

Moreover, for any 𝑟 , we have

E [𝐴]
E [𝐵] ≤ 𝑟 =⇒ E [𝐴 − 𝑟𝐵] ≤ 0 =⇒ Pr

[
𝐴

𝐵
≤ 𝑟

]
> 0.

The Cheeger’s inequality is proved.
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