[CS3958: Lecture 14] Graph Expansion(Cont'), Cheeger's Inequality

Instructor: Chihao Zhang, Scribed by Yulin Wang

January 1, 2023

1 Graph Expansion (Cont')

Expansion can be defined on any weighted undirected graph, not only for Markov chains: Let G = (V, E) be a weighted undirected graph with a weight function w(i, j) > 0 for each edge $\{i, j\} \in E$. Then we define the expansion as

$$\Phi(S,\bar{S}) = \frac{\sum_{i \in S, j \in \bar{S}} w(i,j)}{\sum_{i,j \in S} w(i,j)}$$

Note this definition is consistent with that of Markov chains. If we let $P(i, j) = \frac{w(i, j)}{\sum_j w(i, j)}$ i.e. *P* is a natural random walk on *G*, then we have $\pi(i) \sim \sum_j w(i, j)$ and $\pi(i)P(i, j) = \pi(j)P(j, i)$. Therefore, the Markov chain *P* can imply some results on the expansion of *G*.

1.1 Applications for Sampling Colorings

Assume we want to sample from all proper [q]-colorings on G = ([n], E) with maximum degree Δ . The Markov chain is

- Pick $v \in [n]$ and $c \in [q]$ uniformly at random.
- Recolor *v* with *c* if possible.

Recall that we proved $\tau_{mix}(\varepsilon) \leq qn \log \frac{n}{\varepsilon}$ when $q > 4\Delta$. Now we want to argue that when q is rather small, the expansion is large for some special graph. Consider the case when G is a star and 1 is the vertex at the center. Let Z be the number of all proper colorings on G, and S be the set of proper colorings that the color of 1 is 1. Then we have

$$Q(S,\bar{S}) = \sum_{i \in S, j \in \bar{S}} \pi(i)P(i,j)$$
$$= (q-1)(q-2)^{n-1}\frac{1}{Z \cdot nq}$$

Since $|S| = (q - 1)^{n-1}$, we have

$$\Phi(S) = \frac{Q(S,\bar{S})}{\pi(S)} = \frac{(q-2)^{n-1}}{(q-1)^{n-2}} \frac{1}{nq} = \frac{q-1}{nq} \left(1 - \frac{1}{q-1}\right)^{n-2} \le \frac{1}{n} \exp\left(-\frac{n-2}{q-1}\right).$$

Therefore, $\tau_{mix} = \Omega\left(n \cdot \exp\left(\frac{q-1}{n-2}\right)\right)$, which means that when $q = o(\frac{n}{\log n})$, τ_{mix} is $n^{\omega(1)}$.

Review: Different views of analyzing mixing time/rate of convergence of Markov Chains.

- Probabilistic view ~ Coupling;
- Algebraic view ~ Spectrum; (Algebraic Graph Theory)
- Geometric view ~ Expansion. (KLS Conjecture)

If we want to upper bound $\Phi(P)$, we need to argue that for any S such that $\pi(S) \leq \frac{1}{2}$, $\Phi(S, \overline{S})$ has an upper bound.

The problem to find a cut S, \overline{S} with maximum expansion is dual with multicommodity flow problem. If you are interested in this topic, search for "canonical paths" or "multi-commodity flow".

2 Cheeger's Inequality

Sometimes it is more convenient to work with L = I - P, the *Laplacian* of *P*. Then

$$L = \sum_{i=1}^{n} (1 - \lambda_i) \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}} \boldsymbol{\Pi}.$$

For every i = 1, 2, ..., n, we use γ_i denote $1 - \lambda_i$. Then $0 = \gamma_1 \le \gamma_2 \le \cdots \le \gamma_n \le 2$ are the eigenvalues of *L*.

The Cheeger's inequality is

$$\frac{\gamma_2}{2} \le \Phi(P) \le \sqrt{2\gamma_2}.$$

There are high-order Cheeger's inequalities indicating the relation between graph expansion and $\lambda_3, \lambda_4, \ldots$

2.1 Proof of $\gamma_2 \leq 2\Phi(P)$

Recall that

$$\gamma_2 = \min_{2-\dim V \subseteq \mathbb{R}^n} \max_{\mathbf{x} \in V \setminus \{\mathbf{0}\}} R_L(\mathbf{x}).$$

Therefore, in order to prove an upper bound for γ_2 , it suffices to construct some 2-dimensional space *V* such that any nonzero $\mathbf{x} \in V$ has small $R_L(\mathbf{x})$.

Suppose $\Phi(P) = \Phi(S)$ for some $S \subseteq V$. Let $\mathbf{1}_S$ and $\mathbf{1}_{\overline{S}}$ be the indicator vector of *S* and its complement \overline{S} respectively. Consider the space $V = \text{span}(\mathbf{1}_S, \mathbf{1}_{\overline{S}})$. Then every $\mathbf{x} \in V$ can be written as $\mathbf{x} = a\mathbf{1}_S + b\mathbf{1}_{\overline{S}}$ for some $a, b \in \mathbb{R}$. We have

$$R_L(a\mathbf{1}_S) = \frac{\sum_{i \in S, j \in \overline{S}} \pi(i) P(i, j)}{\pi(S)}$$
$$= \frac{\sum_{i \in S, j \in \overline{S}} \Pr\left[X_t = i \land X_{t+1} = j\right]}{\pi(S)}$$
$$= \frac{\Pr\left[X_t \in S \land X_{t+1} \in \overline{S}\right]}{\pi(S)}$$
$$= \Phi(S).$$

Similarly, we have $R_L(b\mathbf{1}_{\overline{S}}) = \Phi(\overline{S})$.

The inequality then follows from the following proposition:

Proposition 1 If at least one of **x** and **y** is not zero, then $R_L(\mathbf{x} + \mathbf{y}) \le 2 \max \{R_L(\mathbf{x}), R_L(\mathbf{y})\}.$

Assume
$$\mathbf{x} = \sum_{i=1}^{n} a_i \mathbf{v}_i$$
 and $\mathbf{y} = \sum_{i=1}^{n} b_i \mathbf{v}_i$. Then

$$R_L(\mathbf{x} + \mathbf{y}) = \frac{\langle \mathbf{x} + \mathbf{y}, L(\mathbf{x} + \mathbf{y}) \rangle_{\Pi}}{\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle_{\Pi}}$$

$$= \frac{\sum_{i=1}^{n} (a_i + b_i)^2 \lambda_i}{\sum_{i=1}^{n} (a_i^2 + b_i^2) \lambda_i}$$

$$\leq \frac{2 \sum_{i=1}^{n} (a_i^2 + b_i^2) \lambda_i}{\sum_{i=1}^{n} a_i^2 + b_i^2}$$

$$\leq 2 \cdot \max \{R_L(\mathbf{x}), R_L(\mathbf{y})\}.$$

2.2 Proof of $\Phi(P) \leq \sqrt{2\gamma_2}$

In order to prove an upper bound for $\Phi(P)$, we give an approximation algorithm to estimate $\Phi(P)$ and the upper bound is a consequence of the analysis of its performance. The algorithm is called *Fiedler's Algorithm*: Input Ω and $\mathbf{x} \in \mathbb{R}^{\Omega}$.

- Sort $\Omega = \{v_1, \ldots, v_n\}$ according to **x** (namely $x(v_1) \le x(v_2) \le \ldots$);
- For every $i \in [n]$, let $S_i = \{v_1, v_2, ..., v_i\}$;
- Return $\min_{i \in [n]} \Phi(S_i) \lor \Phi(\overline{S}_i)$.

We prove the following stronger theorem:

Theorem 2 For all $\mathbf{x} \perp \mathbf{1}$, let S be the set returned by Fiedler's algorithm on the input \mathbf{x} . Then

$$\Phi(S) \le \sqrt{2R_L(\mathbf{x})}.$$

The Cheeger's inequality then follows by taking $\mathbf{x} = \mathbf{v}_2$.

For simplicity, we assume $\Omega = [n]$ and $\mathbf{x}(1) \le \mathbf{x}(2) \le \dots$ here. To prove the theorem, we first normalize the vector \mathbf{x} . Let

$$\ell \triangleq \min_{i \in [n]} \sum_{i=1}^{\ell} \pi(i) \ge \sum_{i=\ell+1}^{n} \pi(i),$$

and for every $i \in [n]$, let $y_i = x_i - x_\ell$. By the definition, $y_\ell = 0$ and $y_i \le 0$ for all $i \le \ell$, $y_i \ge 0$ for all $i \ge \ell$.

We have the following proposition:

Proposition 3 $R_L(\mathbf{x}) \ge R_L(\mathbf{y})$.

To see why it holds, note that

$$R_L(\mathbf{x}) = \frac{\sum_{i,j} \pi(i) P(i,j) (x_i^2 - x_i x_j)}{\langle \mathbf{x}, \mathbf{x} \rangle_{\Pi}} = \frac{\sum_{i,j \in \Omega} \pi(i) P(i,j) (x_i - x_j)^2}{\langle \mathbf{x}, \mathbf{x} \rangle_{\Pi}}$$

Since $\mathbf{y} = \mathbf{x} - y_{\ell}\mathbf{1}$ is obtained from \mathbf{x} by substracting a constant multiples of **1**, this operation does not change the numerator and increase the denominator (because $\mathbf{x} \perp \mathbf{1}$). This can also be verified via direct calculation.

As a result, we only need to prove that $\Phi(S) \leq \sqrt{2R_L(\mathbf{y})}$. We prove by the *probabilistic method*. That is, we randomly choose some $t \in [y_1, y_n]$ (following a certain tailored density) and consider the expected expansions of $\Phi(S_t)$ and $\Phi(\overline{S}_t)$ where $S_t \triangleq \{i \in [n] \mid y_i \leq t\}$.

To this end, we can normalize **y** by dividing some constant and assume without loss of generality that $y_1^2 + y_n^2 = 1$. We sample *t* with density p(t) = 2|t|.

Note that for every $t \in [y(1), y(n)]$,

$$\max\left\{\Phi(S_t), \Phi(\overline{S}_t)\right\} = \frac{\sum_{i \in S_t, j \in \overline{S}_t} \pi(i) P(i, j)}{\min\left\{\pi(S_t), \pi(\overline{S}_t)\right\}} =: \frac{A}{B}$$

Our goal is to find (S, \overline{S}) such that $\Phi(S) \lor \Phi(\overline{S}) \le \sqrt{2\gamma_2}$.

We calculate the expectations of the numerator and denominator respectively.

where (\heartsuit) is due to Cauchy-Schwarz. On the other hand, we have

$$\mathbf{E}[B] = \mathbf{E}\left[\min\left\{\pi(S_t), \pi(\overline{S}_t)\right\}\right]$$
$$= \mathbf{Pr}[t < 0] \mathbf{E}[\pi(S_t) \mid t < 0] + \mathbf{Pr}[t \ge 0] \mathbf{E}\left[\pi(\overline{S}_t) \mid t > 0\right].$$

 $\langle \mathbf{y}, \mathbf{y} \rangle_{\Pi} = \sum_{i,j} \pi(i) P(i,j) \, y_i^2 \geq \sum_{i < j} \pi(i) P(i,j) \, (y_i^2 + y_j^2).$

Note that

$$\begin{aligned} & \mathbf{Pr}\left[t<0\right] \mathbf{E}\left[\pi(S_t) \mid t<0\right] = \mathbf{Pr}\left[t<0\right] \cdot \mathbf{E}\left[\sum_{i=1}^n \pi(i) \cdot \mathbf{1}\left[i \in S_t\right] \mid t<0\right] \\ &= \mathbf{Pr}\left[t<0\right] \cdot \sum_{i=1}^n \pi(i) \cdot \mathbf{Pr}\left[i \in S_t \mid t<0\right] \\ &= \sum_{i=1}^n \pi(i) \cdot \mathbf{Pr}\left[i \in S_t \wedge t<0\right] \\ &= \sum_{i=1}^n \pi(i) \mathbf{Pr}\left[y_i \le t<0\right] \\ &= \sum_{i \le \ell}^\ell \pi(i) \cdot \int_{y_i}^0 2|t| \mathrm{d}t \\ &= \sum_{i=1}^\ell \pi(i) y(i)^2. \end{aligned}$$

Similarly

$$\Pr\left[t \ge 0\right] \mathbb{E}\left[\pi(\overline{S}_t) \mid t > 0\right] = \sum_{i=\ell+1}^n \pi(i) y(i)^2.$$

Therefore,

$$\mathbf{E}\left[B\right] = \sum_{i=1}^{n} \pi(i) y(i)^2 = \langle \mathbf{y}, \mathbf{y} \rangle_{\Pi}.$$

Now we know that

$$\frac{\mathbf{E}\left[A\right]}{\mathbf{E}\left[B\right]} \leq \frac{\sqrt{2\langle \mathbf{y}, \mathbf{y} \rangle_{\Pi}} \cdot \sqrt{\langle \mathbf{y}, L \mathbf{y} \rangle_{\Pi}}}{\langle \mathbf{y}, \mathbf{y} \rangle_{\Pi}} = \sqrt{2R_L(\mathbf{y})} \leq \sqrt{2R_L(\mathbf{x})}.$$

Moreover, for any *r*, we have

$$\frac{\mathbf{E}[A]}{\mathbf{E}[B]} \le r \implies \mathbf{E}[A - rB] \le 0 \implies \mathbf{Pr}\left[\frac{A}{B} \le r\right] > 0.$$

The Cheeger's inequality is proved.