[CS3958: Lecture 14] Graph Expansion(Cont’), Cheeger’s

Inequality
Instructor: Chihao Zhang, Scribed by Yulin Wang
January 1, 2023

1 Graph Expansion (Cont’)

Expansion can be defined on any weighted undirected graph, not only for
Markov chains: Let G = (V, E) be a weighted undirected graph with a
weight function w(i, j) > 0 for each edge {i, j} € E. Then we define the
expansion as
ZieS,jeS W(i’ ])
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Note this definition is consistent with that of Markov chains. If we let

o(S,5) =

P(i, j) = Zwiv—l(jgj) i.e. P is a natural random walk on G, then we have 7 (i) ~
G w(i,
2 w(i, j) and w(i)P(i, j) = #(j)P(j,i). Therefore, the Markov chain P can

imply some results on the expansion of G.

1.1 Applications for Sampling Colorings

Assume we want to sample from all proper [g]-colorings on G = ([n], E)

with maximum degree A. The Markov chain is
« Pick v € [n] and ¢ € [q] uniformly at random.
« Recolor v with ¢ if possible.

Recall that we proved 7,,ix(¢) < gnlog i when g > 4A. Now we want to
argue that when g is rather small, the expansion is large for some special
graph. Consider the case when G is a star and 1 is the vertex at the center.
Let Z be the number of all proper colorings on G, and S be the set of proper
colorings that the color of 1 is 1. Then we have

Q.8 = > (PG, j)
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=(q-1(q-2) Zong

Since |S| = (¢ — 1)""1, we have

_ n— n-2
@(S)=Q(S’S)—(q_2) 11_q—1(1_q1 ) S%exp(—n_z).

7(S) ~(g-1)"2ng ngq -1 q-1

Therefore, Ty = Q (n - exp (Z—i;)), which means that when q = 0(@),

Tmix is n®W.

Review: Different views of analyzing
mixing time/rate of convergence of Markov
Chains.

« Probabilistic view ~ Coupling;

« Algebraic view ~ Spectrum; (Algebraic
Graph Theory)

« Geometric view ~ Expansion. (KLS
Conjecture)

If we want to upperbound ®(P), we need
to argue that for any S such that 7(S) < %,
®(S,S) has an upper bound.

The problem to find a cut S, S with
maximum expansion is dual with multi-
commodity flow problem. If you are inter-
ested in this topic, search for "canonical
paths" or "multi-commodity flow".



[cs3958: LECTURE 14] GRAPH EXPANSION(CONT’), CHEEGER’S INEQUALITY 2

2 Cheeger’s Inequality

Sometimes it is more convenient to work with L = I — P, the Laplacian of P.
Then

n
L= Z(l — A)vivIIL
i=1

Foreveryi =1,2,...,n,weusey; denote 1 — A;. Then0 =y; <y, <--- <
Yn < 2 are the eigenvalues of L.
The Cheeger’s inequality is
There are high-order Cheeger’s inequalities

indicating the relation between graph
expansion and A3, Ay, . . ..

2.1 Proof of y, < 20(P)
Recall that

min max Ry (x).
2-dim VCR” xeV\ {0}

Y2 =

Therefore, in order to prove an upper bound for y, it suffices to construct
some 2-dimensional space V such that any nonzero x € V has small Ry (x).

Suppose ®(P) = ®(S) for some S C V. Let 15 and 15 be the indicator
vector of § and its complement S respectively. Consider the space V =
span(1s, 15). Then every x € V can be written as x = als + b15 for some
a,b € R. We have
ZiES,j€§ ”(I)P(l3 .])

n(S)
ZiES,jGEPr [Xt =iA Xt+1 = .]]
n(S)
Pr|X;eSAXui €S

(S)

Rr(als) =

= 0(S).

Similarly, we have Ry (b13) = o(S).
The inequality then follows from the following proposition:

Proposition 1 If at least one of x and'y is not zero, then Rp(x +y) <
2max {Ry (x),R.(y)}.

Assume x = Y1 a;v; andy = Y1, byv;. Then
x4y Lx+y)n

X+y.x+y)n

_ Y (ai +bi)? A

ity (ai + b;)?
- 230 (a2 + b2

Ri(x+y) =

n 2. p2
iz a; + b3

< 2-max {Rg(x), R (y)} .



[cs3958: LECTURE 14] GRAPH EXPANSION(CONT’), CHEEGER’S INEQUALITY 3

2.2 Proof of ®(P) < /2y,

In order to prove an upper bound for ®(P), we give an approximation
algorithm to estimate ®(P) and the upper bound is a consequence of the
analysis of its performance. The algorithm is called Fiedler’s Algorithm:
Input Q and x € R®.

« Sort Q = {ovy,...,v,} according to x (namely x(v;) < x(v3) <...);
« Foreveryie [n],letS; = {v1,0s,...,0;i};
« Return min;e, ®(S;) V O(S)).

We prove the following stronger theorem:

Theorem 2 Forallx L 1, letS be the set returned by Fiedler’s algorithm on

the input x. Then
D(S) < V2R (x).

The Cheeger’s inequality then follows by taking x = vy.
For simplicity, we assume Q = [n] and x(1) < x(2) < ... here. To prove
the theorem, we first normalize the vector x. Let

n

¢
72 mi N > .
iI;l[lrIll];ﬂ(l) > Z (i)

i=t+1
and for every i € [n], let y; = x; — x,. By the definition, y, = 0 and y; < 0 for
alli <¢,y; >0foralli > ¢
We have the following proposition:

Proposition 3 Ry (x) > R(y).
To see why it holds, note that

. .o 2
By mOP(L ) —xpxy) _ Hep TOPED b =)

Re(x) = (x,X)n1 (x, )0

Since y = x — y,1 is obtained from x by substracting a constant multiples of
1, this operation does not change the numerator and increase the denomi-
nator (because x L 1). This can also be verified via direct calculation.

As a result, we only need to prove that ®(S) < \/m . We prove by
the probabilistic method. That is, we randomly choose some ¢t € [y, y,]
(following a certain tailored density) and consider the expected expansions
of ®(S;) and ®(S;) where S; £ {i € [n] | y; < t}.

To this end, we can normalize y by dividing some constant and assume
without loss of generality that y* + y2 = 1. We sample ¢ with density
p(t) =21,

Note that for every ¢ € [y(1),y(n)],

ZieS,,jeS} z(D)P (i, J) —. ‘é
min {ﬂ(st), ﬂ(gt)} B

max {@(St), @(Et)} =

Our goal is to find (S, S) such that ®(S) v
®(S) < V2ys.



[cs3958: LECTURE 14] GRAPH EXPANSION(CONT’), CHEEGER'S INEQUALITY 4

We calculate the expectations of the numerator and denominator respec-
tively.

E[A]= ) 7()P(ij)Pr|i €S, ) e8]
i,jeQ
i<j

Z n(i)P(i,j)/yi2|t|dt

i,jeQ Yj
i<j

>, (PG j) (sgn(yj) +yj = sgn(y:) - y?)

i,jeQ
i<j

> w()PG,j) (1yil +]yjl) (u5 - 1)
z]eQ
i<j

IA

= 2 @OPGEN? (il + |y;]) (PG (g - w0

i,jeQ
i<j
2 2
(@)
< | 25 7P (lwl +y)’ | -] D =(DPGI) (v - vi)*
L,jeQ i,jeQ
i<j i<j

1

2

<(2 3 2P (1wl + lyl) | Vo Iyin

i,jeQ
i<j

< V2(y y)m -V Ly)m,

where (©) is due to Cauchy-Schwarz. (v, y)n = Zn(i)P(i,j)yf > Z n(i)P(i,j)(y?+y§)_
On the other hand, we have ij i<y

E[B] =E [min {n(st), n(i)}]

—Prt <O]E[x(S;) |t <0]+Pr[t>0]E [n(Et)

>0
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Note that

n

Zﬂ(i) 1[i € 8]

i=1

Prt <O0]E[x(S;)|t<0] =Pr[t<0]-E

t<ol
n

=Pr[t<o].zn(i)~1>r[iest|t<o]

i=1

=in’(i)'Pr[i€St/\t<O]

i=1

= Z 2(i)Pr [y; < t < 0]
i=1

= Zﬂ(i) : /0 2lt|dt

i<t Yi
']
= > Dy
i=1
Similarly
Pr[t > 0]E [n(Et) t> o] = 3wyl
i=f+1
Therefore,

n

E[B] = ) 7())y()* = (v, y)n.

i=1

Now we know that

E[A] _ V2, v - V(. Ly)n
E[B] ~ (y,y)n

Moreover, for any r, we have

= \/ZRL(y) < \/ZRL(X).

E[A]
E[B]

<r = E[A-rB] <0 = Pr

A :|
—<r|>0.
B

The Cheeger’s inequality is proved.
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