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1 Variational Characterization of Eigenvalues

In this section, we will always assume that 𝑃 is a reversible chain with
respect to 𝜋 and 𝜆1, . . . , 𝜆𝑛 ∈ ℝ are its eigenvalues with corresponding
orthonormal eigenvectors 𝑣1, . . . , 𝑣𝑛 . Hence 𝑃 =

∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑣

⊤
𝑖 Π. Assume

𝜆1 ≥ 𝜆2 ≥ . . . 𝜆𝑛 , then the following proposition is immediate.

Proposition 1 1 = 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ −1.

Proof. Since 𝑃 is a stochastic matrix, we have |𝜆𝑖 | ≤ 1 for all 𝑖 ∈ [𝑛].
Moreover, 1 is an eigenvalue of 𝑃 with 𝑣1 = 1. □

Define the Rayleigh quotient

𝑅𝑃 (𝑥) =
⟨x, 𝑃x⟩Π
⟨x, x⟩Π

.

We can write 𝜆1 as the optimum of the following optimization problem:

𝜆1 = max
x≠0

𝑅𝑃 (x) .

This can be easily verified using the spectral decomposition of 𝑃 . Supposing
x =

∑𝑛
𝑖=1 𝑎𝑖𝑣𝑖 , we have

𝑅𝑃 (x) =
∑𝑛
𝑖=1 𝜆𝑖𝑎

2
𝑖∑𝑛

𝑖=1 𝑎
2
𝑖

=
𝑛∑
𝑖=1

𝑎2𝑖∑𝑛
𝑗=1 𝑎

2
𝑗

· 𝜆𝑖 .

To justify this, imagining the following
game between two players: a max player
and a min player.

• The goal of the max player is to maxi-
mize 𝑅𝑃 (x) , and what he can do is to
provide some 𝑘-dimensional subspace
𝑉 ⊆ ℝ𝑛 ;

• The goal of the min player is to min-
imize 𝑅𝑃 (x) and he can only choose
those nonzero vectors from the space𝑉
provided by the max player.

Recall that for each nonzero vector x,
the value of 𝑅𝑃 (x) can be viewed as a
weighted sum of 𝑃 ’s eigenvalues. So the
min players strategy must be choosing
the vector whose mass is concentrated on
small eigenvalues. The max player should
choose the collection of vectors so that the
min player’s strategy does not perform
well, so his strategy must be choosing
𝑉 = 𝑠𝑝𝑎𝑛 (𝑣1, . . . , 𝑣𝑘 ) . This yields the min
player to choose x = 𝑐 · 𝑣𝑘 , and therefore
𝑅𝑃 (x) = 𝜆𝑘 .

Therefore, the Rayleigh quotient of any each nonzero x can be viewed as
a weighted sum of all 𝑃 ’s eigenvalues. Of course the maximum is achieved
at x = 𝑣1 — putting all the weight on the maximum eigenvalue. We also
have

𝜆𝑛 = min
x≠0

𝑅𝑃 (x).

Similar arguments can be used to prove that 𝜆2 = max x≠0
x⊥𝑣1

𝑅𝑃 (x), or more
generally

𝜆𝑘 = max
x≠0

x⊥span(𝑣1,...,𝑣𝑘−1 )
𝑅𝑃 (x),

where x ⊥ y means ⟨x, y⟩Π = 0.
We can use another two-stage optimization problem to characterize 𝜆𝑘 :

𝜆𝑘 = max
𝑘−dimenional subspace

𝑉 ⊆ℝ𝑛

min
x∈𝑉 \{0}

𝑅𝑃 (x) .
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2 FTMC for Reversible Chains

Recall the Fundamental Theorem of Markov Chains:

Theorem 2 (Fundamental theorem of Markov chains) . If a finite Markov
chain 𝑃 ∈ ℝ𝑛×𝑛 is irreducible and aperiodic, then it has a unique stationary
distribution 𝜋 ∈ ℝ𝑛 . Moreover, for any distribution 𝜇 ∈ ℝ𝑛 ,

lim
𝑡→∞

𝜇T𝑃𝑡 = 𝜋T .

Today we will give another proof of the theorem for reversible chains
using spectral decomposition. The proof is elegant, insightful and can be
generalized to studying the rate of convergence.

Let us collect what we know about 𝑃 . First, we have the spectral decom-
position

𝑃 =
𝑛∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
T
𝑖 Π = 𝑉Λ𝑉 TΠ,

where 𝜆1 ≥ 𝜆2 ≥ · · · 𝜆𝑛 are eigenvalues of 𝑃 with corresponding orthonor-
mal (w.r.t. the inner product ⟨·, ·⟩Π) eigenvectors 𝑣1, . . . , 𝑣𝑛 . Moreover, we
know 𝜆1 = 1 and 𝑣1 = 1.

With this decomposition, it is easy to compute

𝑃𝑡 =
𝑛∑
𝑖=1

𝜆𝑡𝑖 𝑣𝑖𝑣
T
𝑖 Π = 1𝜋T +

𝑛∑
𝑖=2

𝜆𝑡𝑖 𝑣𝑖𝑣
T
𝑖 Π.

Note that 1𝜋T =


𝜋T

𝜋T

...

𝜋T


and therefore for any distribution 𝜇, it holds

𝜇T1𝜋T = 𝜋T. This implies that

lim
𝑡→∞

𝜇T𝑃𝑡 = 𝜋T + lim
𝑡→∞

𝜇T

(
𝑛∑
𝑖=2

𝜆𝑡𝑖 𝑣𝑖𝑣
T
𝑖 Π

)
.

Therefore we only need to argue when

lim
𝑡→∞

𝜇T

(
𝑛∑
𝑖=2

𝜆𝑡𝑖 𝑣𝑖𝑣
T
𝑖 Π

)
= 0.

Since 𝑃 is stochastic, we know that |𝜆𝑖 | ≤ 1 for all eigenvalues 𝜆𝑖 of 𝑃 .
Therefore, there are two ways to prohibit lim𝑡→∞ 𝜇T

(∑𝑛
𝑖=2 𝜆

𝑡
𝑖 𝑣𝑖𝑣

T
𝑖 Π

)
= 0,

𝜆2 = 1 or 𝜆𝑛 = −1. We will now show that the two cases correspond to
reducibility and periodicity of 𝑃 respectively.

Since we assume 𝑃 is reversible, all edges in 𝑃 can be viewed as being
undirected, namely (𝑢, 𝑣) ∈ 𝐸 ⇐⇒ (𝑣,𝑢) ∈ 𝐸. As a result, reducibility is
equivalent to that the transition graph is disconnected.

We now prove
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Proposition 3 𝜆2 = 1 if and only if the transition graph of 𝑃 is disconnected.

Proof. The main tool to prove the proposition is the variational character-
ization of eigenvalues. Recall that

𝜆2 = max
x≠0
x⊥1

𝑅𝑃 (x)

= max
x≠0
x⊥1

⟨x, 𝑃x⟩Π
⟨x, x⟩Π

= max
x≠0
x⊥1

∑
(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)𝑥 (𝑖)𝑥 ( 𝑗)∑

𝑖∈𝑉 𝜋 (𝑖)𝑥 (𝑖)2
+ 1 − 1

= max
x≠0
x⊥1

1 −
∑

{𝑖, 𝑗 }∈𝐸 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑥 (𝑖) − 𝑥 ( 𝑗))2∑
𝑖∈𝑉 𝜋 (𝑖)𝑥 (𝑖)2

Therefore, 𝜆2 = 1 if and only if we can find some nonzero x ⊥ 1 such
that

∑
{𝑖,𝑗 }∈𝐸 𝜋 (𝑖 )𝑃 (𝑖, 𝑗 ) (𝑥 (𝑖 )−𝑥 ( 𝑗 ) )2∑

𝑖∈𝑉 𝜋 (𝑖 )𝑥 (𝑖 )2
= 0. Clearly this is equivalent to that 𝑃 is

disconnected. □ In fact, we can prove that 𝜆𝑘 = 1 iff 𝑃
contains at least 𝑘 connected components.Since 𝑃 is reversible, if 𝑃 is connected and contains more than one ver-

tex, then each vertex is on a cycle of length two. Therefore, 𝑃 is periodic iff
it does not contain odd cycles, or equivalently, it is bipartite.

Proposition 4 𝜆𝑛 = −1 if and only if the transition graph of 𝑃 is bipartite.

Proof. Again by the variational characterization of 𝜆𝑛 , we have

𝜆𝑛 = min
x≠0

𝑅𝑃 (x)

= min
x≠0

∑
(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)𝑥 (𝑖)𝑥 ( 𝑗)∑𝑛

𝑖=1 𝜋 (𝑖)𝑥 (𝑖)2
+ 1 − 1

= min
x≠0

∑
(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)𝑥 (𝑖)𝑥 ( 𝑗) + ∑

(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)𝑥 (𝑖)2∑𝑛
𝑖=1 𝜋 (𝑖)𝑥 (𝑖)2

− 1

= min
x≠0

2
∑

(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)𝑥 (𝑖)𝑥 ( 𝑗) + ∑
(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑥 (𝑖)2 + 𝑥 ( 𝑗)2)

2
∑𝑛
𝑖=1 𝜋 (𝑖)𝑥 (𝑖)2

− 1

= min
x≠0

∑
(𝑖, 𝑗 ) ∈𝑉 2 𝜋 (𝑖)𝑃 (𝑖, 𝑗)(𝑥 (𝑖) + 𝑥 ( 𝑗))2

2
∑𝑛
𝑖=1 𝜋 (𝑖)𝑥 (𝑖)2

− 1

Clearly the numerator is zero for some nonzero x if and only if 𝑃 is bipar-
tite. □

2.1 Relaxation Time

Therefore by discussion above, if 𝜆2 < 1 and 𝜆𝑛 > −1, or equivalently 𝑃 is
aperiodic and irreducible, then

lim
𝑡→∞

𝜇T

(
𝑛∑
𝑖=2

𝜆𝑡𝑖 𝑣𝑖𝑣
T
𝑖 Π

)
= 0.

The gap between 1 and the absolute value of these two eigenvalues also
determines how fast 𝑃𝑡 converges to 1𝜋T.
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Let 𝜆∗ ≜ max {|𝜆2 |, |𝜆𝑛 |}, then the relaxation time of 𝑃 is defined to be

𝜏rel ≜
1

1 − 𝜆∗ .

A lazy chain, for example, 𝑃 ′ = 1
2 (𝑃 + 𝐼 ) ⪰

0, which implies that 𝜆𝑛 (𝑃 ′ ) ≥ 0. So we
consider 𝜆∗ = |𝜆2 | most of the time in
applications.

It measures the rate of convergence and is related to the mixing time as
follows:

Theorem 5 Let 𝑃 be a reversible chain with stationary distribution 𝜋 , then

(𝜏rel − 1) log 1
2𝜀

≤ 𝜏mix (𝜀) ≤ 𝜏rel log
1

𝜀𝜋min
,

where 𝜋min = min𝑥∈Ω 𝜋 (𝑥).

3 From Coupling to Spectral Gap

Theorem 6 (Mu-Fa Chen, 1998) If there is a coupling {𝜔𝑡 } such that

E(𝑋𝑡+1,𝑌𝑡+1 )∼𝜔𝑡 [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼)𝑑 (𝑋𝑡 , 𝑌𝑡 ),

then |𝜆∗ | ≤ 1 − 𝛼 .
Here we consider a Markov chain as a
operator 𝑃 such that for any function
𝑓 : Ω → ℝ,

[𝑃 𝑓 ] (𝑥 ) =
∑
𝑦

𝑓 (𝑦)𝑃 (𝑥, 𝑦) .

Intuitively, 𝑃 𝑓 (𝑥 ) is the expectation of
𝑓 (𝑦) that one walks from 𝑥 to 𝑦 by one
step.

Proof. Define Lip(𝑓 ) ≜ max𝑥,𝑦∈Ω
| 𝑓 (𝑥 )−𝑓 (𝑦) |
𝑑 (𝑥,𝑦) . For any 𝑓 : Ω → ℝ, we

claim that
Lip(𝑃 𝑓 ) ≤ (1 − 𝛼)Lip(𝑓 ). (1)

And then we have for any eigenvector 𝑓 of 𝜆2,

|𝜆2 |Lip(𝑓 ) = Lip(𝜆𝑓 ) = Lip(𝑃 𝑓 ) ≤ (1 − 𝛼)Lip(𝑓 ).

Therefore, |𝜆2 | ≤ 1 − 𝛼 . Now we only need to prove eq. (1). For any 𝑥,𝑦,

|𝑃 𝑓 (𝑥) − 𝑃 𝑓 (𝑦) |
𝑑 (𝑥,𝑦) =

E [𝑓 (𝑋1)] − E [𝑓 (𝑌1)]
𝑑 (𝑥,𝑦)

≤E(𝑋1,𝑌1 )∼𝜔 [|𝑓 (𝑋1) − 𝑓 (𝑌1) |] 𝑑 (𝑥,𝑦)

≤E [Lip(𝑓 )𝑑 (𝑋1, 𝑌1)]
𝑑 (𝑥,𝑦) = (1 − 𝛼)Lip(𝑓 ),

where (𝑋1, 𝑌1) is generated from (𝑥,𝑦) according to the coupling. □

4 Graph Expansion

Example 1 Consider a simple random walk on a graph that one walks to a
neighbor uniformly at random for each step. Therefore, 𝑃 (𝑖, 𝑗) = 1

deg(𝑖 ) and
𝜋 (𝑖) ∼ deg(𝑖). It is obviously that the simple random walk on 𝐺1 = 𝐾𝑛 mixes
much faster than that on 𝐺2.

𝐾𝑛

𝐺1

𝐾𝑛/2 𝐾𝑛/2

𝐺2

𝐾𝑛 denotes complete graph of 𝑛 vertices.
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Let 𝑃 be a reversible chain on Ω. For any 𝑖, 𝑗 ∈ Ω, define the probability
flow from 𝑖 to 𝑗 as 𝑄 (𝑖, 𝑗) ≜ 𝜋 (𝑖)𝑃 (𝑖, 𝑗). Similarly, for any 𝑆 ⊂ Ω, the flow
from 𝑆 to 𝑆 , denoted by 𝑄 (𝑆, 𝑆), is ∑

𝑖∈𝑆,𝑗∈Ω\𝑆 𝑄 (𝑖, 𝑗), and we define the
expansion of 𝑆 as

Φ(𝑆) = 𝑄 (𝑆, 𝑆)
𝜋 (𝑆) ,

where 𝜋 (𝑆) = ∑
𝑖∈𝑆 𝜋 (𝑖).

Suppose 𝑋𝑡 ∼ 𝜋 , then a direct calculation can prove that

Φ(𝑆) = Pr [𝑋𝑡+1 ∉ 𝑆 | 𝑋𝑡 ∈ 𝑆] .

The expansion of 𝑃 is

Φ(𝑃) = min
𝑆⊆Ω:𝜋 (𝑆 )≤ 1

2

Φ(𝑆).

The following theorem justify our intuition that small expansion implies
slow mixing.

Theorem 7 Let 𝑃 be a reversible chain.

𝜏𝑚𝑖𝑥 (𝜀) ≥
1 − 2𝜀
2

1
Φ(𝑃) .

The relation between mixing time and
graph expansion obtained from Cheeger’s
inequality and Theorem 5 is much weaker
than this direct one.

Proof. Let 𝑋0 ∼ 𝜋 , and we use 𝑃 to generate 𝑋1, 𝑋2, . . .

Let 𝑆 = argmin𝜋 (𝑆 )≤ 1
2
Φ(𝑆).

Pr
[
𝑋𝑡 ∈ 𝑆

�� 𝑋0 ∈ 𝑆
]
=
Pr

[
𝑋𝑡 ∈ 𝑆 ∧ 𝑋0 ∈ 𝑆

]
Pr [𝑋0 ∈ 𝑆]

≤
∑𝑡−1
𝑖=0 Pr

[
𝑋𝑖 ∈ 𝑆 ∧ 𝑋𝑖+1 ∈ 𝑆

]
Pr [𝑋0 ∈ 𝑆]

=
𝑡 · Pr

[
𝑋1 ∈ 𝑆 ∧ 𝑋0 ∈ 𝑆

]
Pr [𝑋0 ∈ 𝑆]

= 𝑡 · Pr
[
𝑋1 ∈ 𝑆

�� 𝑋0 ∈ 𝑆
]

= 𝑡 · Φ(𝑆).

So there exists 𝑥0 such that

Pr [𝑋𝑡 ∈ 𝑆 | 𝑋0 = 𝑥0] ≥ 1 − 𝑡 · Φ(𝑆).

Therefore,

𝑑𝑇𝑉 (𝑃𝑡 (𝑥0, ·), 𝜋) ≥ 1 − 𝑡 · Φ(𝑆) − 𝜋 (𝑆) ≥ 1
2
− 𝑡 · Φ(𝑆) ≥ 𝜀,

as long as 𝑡 ≤ 1−2𝜀
2

1
Φ(𝑃 ) . □
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