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1 Reversible Chains

A Markov chain 𝑃 over state space [𝑛] is (time) reversible if there exists
some distribution 𝜋 satisfying

∀𝑖, 𝑗 ∈ [𝑛], 𝜋 (𝑖)𝑃 (𝑖, 𝑗) = 𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖).

This family of identities is called detailed balance conditions. Moreover, we
have

Proposition 1 If 𝑃 is reversible w.r.t a distribution 𝜋 , then 𝜋 must be a sta-
tionary distribution of 𝑃 .

Proof. To see this, note that

𝜋T𝑃 ( 𝑗) =
∑
𝑖∈[𝑛]

𝜋 (𝑖)𝑃 (𝑖, 𝑗) =
∑
𝑖∈[𝑛]

𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖) = 𝜋 ( 𝑗) .

□
The name reversible chain comes from the fact that for any sequence of vari-
ables 𝑋0, 𝑋1, . . . , 𝑋𝑡 following the chain, the distribution of (𝑋0, 𝑋1, . . . , 𝑋𝑡−1, 𝑋𝑡 )
is identical to the distribution of (𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋1, 𝑋0).

We will study reversible chains since their transition matrices are essen-
tially symmetric in some sense, so many powerful tools in linear algebra
apply. We will also see that reversible chains are general enough for most of
our (algorithmic) applications. You can verify that the the random walks

on the hypercube studied in the last lecture
are reversible Markov chains with respect
to uniform distribution.2 Metropolis Algorithm
• 𝑃 is aperiodic⇐⇒𝐺 is not bipartite.

• 𝑃 is irreducible⇐⇒𝐺 is connected.

• 𝑃 is reversible⇐⇒𝐺 is undirected.

Given a distribution 𝜋 over a state space Ω, how can we design a Markov
chain 𝑃 so that 𝜋 is the stationary distribution of 𝑃? This is easy because
we can simply let 𝑃 = 1𝜋T. However, what if we only allow a given set of
entries of 𝑃 to be nonzero?

This is equivalent to the problem of assigning transition probabilities in
a transition graph 𝐺 so that 𝜋 is the stationary distribution of the random
walk. The Metropolis algorithm provides a way to achieve the goal as long
as 𝐺 is connected and undirected.

Let Δ be the maximum degree of the transition graph except self-
loops.1 We describe the following process to construct a transition ma- 1 That is

Δ ≜ max𝑢∈ [𝑛]
∑

𝑣≠𝑢∈ [𝑛] 𝟙[ (𝑢, 𝑣) ∈ 𝐸 ]
)
.trix 𝑃 : Choose 𝑘 ∈ [Δ + 1] uniformly at random. For any 𝑖 ∈ [𝑛], let

{ 𝑗1, 𝑗2, . . . , 𝑗𝑑 } be the 𝑑 neighbours of 𝑖 . We consider the transition at state 𝑖
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: - If 𝑑 + 1 ≤ 𝑘 ≤ Δ + 1, do nothing. - If 𝑘 ≤ 𝑑 , - propose to move from 𝑖 to
𝑗𝑘 . - accept the proposal with probability min

{
𝜋 ( 𝑗𝑘 )
𝜋 (𝑖 ) , 1

}
. Then the transition

matrix is, for every 𝑖, 𝑗 ∈ [𝑛],

𝑃 (𝑖, 𝑗) =


1
Δ min

{
𝜋 ( 𝑗 )
𝜋 (𝑖 ) , 1

}
, if 𝑖 ≠ 𝑗 ;

1 −∑𝑘≠𝑖 𝑝𝑖𝑘 , if 𝑖 = 𝑗 .

We can verify that 𝑃 is reversible with respect to 𝜋 :

∀𝑖, 𝑗 ∈ Ω : 𝜋 (𝑖)𝑃 (𝑖, 𝑗) = 𝜋 (𝑖)· 1
Δ
min

{
𝜋 ( 𝑗)
𝜋 (𝑖) , 1

}
=
min {𝜋 (𝑖), 𝜋 ( 𝑗)}

Δ
= 𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖).

The advantage of the Metropolis algorithm
is that we do not need to know 𝜋 in order
to implement the algorithm. We only need
to know the quantity 𝜋 ( 𝑗 )

𝜋 (𝑖 ) , which is much
easier to compute in many applications.

3 Sample Proper Coloring

Let’s consider the problem of sampling proper colorings. Given a graph 𝐺 =

(𝑉 , 𝐸), we want to color the vertices using 𝑞 colors under the condition that
no two adjacent vertices share the same color. More formally, a coloring of
𝐺 is a mapping 𝑐 : 𝑉 ↦→ [𝑞], and we call it proper iff ∀ {𝑢, 𝑣} ∈ 𝐸, 𝑐 (𝑢) ≠
𝑐 (𝑣). The proper coloring problem is NP-hard in general. However, for
𝑞 > Δ there always exists a proper coloring that can be easily obtained by a
greedy algorithm, where Δ is the maximum degree of the graph.

If we want to count the number of proper colorings, then the problem
becomes harder. It is known that for every 𝑞 ≥ Δ, the problem is #P-hard.
On the other hand, we can use a uniform sampler to obtain an algorithm to
approximately counting the number of proper coloring, at an arbitrarily low
cost in the precision.

In fact, it is known that an approximate counting algorithm is equivalent
to an uniform sampler in many cases (for example, sampling proper color-
ing). We only show one direction here: a sampler implies an algorithm for
approximate counting. Given a graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [𝑛], let C be
the set of proper colorings and 𝑍 = |C|. Suppose we have an oracle that can
uniformly generate a proper coloring from 𝐶 . Fix a proper coloring 𝜎 . We
have

1
𝑍

=Pr𝑥∼𝐶 [𝑥 = 𝜎]

=Pr𝑥∼𝐶 [𝑥 (1) = 𝜎 (1) ∧ 𝑥 (2) = 𝜎 (2) ∧ . . . ]

=
𝑛∏
𝑖=1

Pr

[
𝑥 (𝑖) = 𝜎 (𝑖)

����� ⋂
𝑗<𝑖

𝑥 ( 𝑗) = 𝜎 ( 𝑗)
]
.

The above probability can be estimated by taking a number of samples from
the oracle, and computing the ratio between colorings such that 𝑥 ( 𝑗) = 𝜎 ( 𝑗)
for 𝑗 ≤ 𝑖 and ones that 𝑥 ( 𝑗) = 𝜎 ( 𝑗) for 𝑗 < 𝑖 . Moreover, the ratio we
just estimated is bounded below by an inverse polynomial and therefore
polynomial number of sample suffices to estimate ratio accurately. The
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strategy works even if the sampler is an approximate one. Hence one can
approximately compute 𝑍 . See [JVV86] for more details.

Now we use MCMC to do sampling. Consider the following Markov
chain to sample proper colorings:

• Pick 𝑣 ∈ 𝑉 and 𝑐 ∈ [𝑞] uniformly at random.

• Recolor 𝑣 with 𝑐 if possible.
It is indeed a Metropolis algorithm. Let

𝜎𝑣←𝑐 (𝑢 ) =
{

𝜎 (𝑢 ) 𝑢 ≠ 𝑣
𝑐 𝑢 = 𝑣.

𝜎𝑣←𝑐 is a neighbor of 𝜎 on the transition
graph, and we accept it if 𝜎𝑣←𝑐 is a proper
coloring, i.e. 𝜋 (𝜎𝑣←𝑐 )

𝜋 (𝜎 ) = 1.

The chain is aperiodic since self-loops exist in the walk. For 𝑞 ≥ Δ + 2, the
chain is irreducible. The bound 𝑞 ≥ Δ + 2 is tight for irreducibility since
when 𝑞 = Δ + 1, each proper coloring of complete graph is frozen. It is still
an open problem if the mixing time of the chain is polynomial in the size of
the graph under the condition 𝑞 ≥ Δ + 2. The best bound so far requires that
𝑞 ≥ ( 116 −𝜀)Δ for a certain constant 𝜀 > 0. Here, we shall give a rapid mixing
proof when 𝑞 > 4Δ using the method of coupling.

The coupling we used is simple: Both players pick same 𝑣 and 𝑐 to move.
However, we are not able to reduce the analyze the coupling to coupon
collector as we did before. We introduce a more general method to analyze
couplings. We define a certain distance 𝑑 (𝑥,𝑦) for any two configurations
𝑥,𝑦 ∈ Ω. We can assume without loss of generality that if 𝑥 ≠ 𝑦 then
𝑑 (𝑥,𝑦) ≥ 1 since Ω is finite. Consider a coupling 𝜔𝑡 of 𝜇𝑡 , 𝜈𝑣 . Then for every
𝑡 ≥ 0 and (𝑋𝑡 , 𝑌𝑡 ) ∼ 𝜔𝑡 , we try to establish

E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼)𝑑 (𝑋𝑡 , 𝑌𝑡 )

for some 𝛼 ∈ (0, 1]. In other words, {𝑑 (𝑋𝑡 , 𝑌𝑡 )}𝑡≥0 is a supermartingale. This
implies that for every 𝑡 ≥ 1,

E [𝑑 (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼)E [𝑑 (𝑋𝑡−1, 𝑌𝑡−1)] ≤ (1 − 𝛼)𝑡𝑑 (𝑋0, 𝑌0).

If we have a universal upper bound for 𝑑 (𝑋0, 𝑌0), say 𝑛, then by coupling
lemma

𝐷TV (𝜇𝑡 , 𝜈𝑡 ) ≤ Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ]
= Pr [𝑑 (𝑋𝑡 , 𝑌𝑡 ) ≥ 1]
≤ E [𝑑 (𝑋𝑡 , 𝑌𝑡 )]
≤ (1 − 𝛼)𝑡 · 𝑛.

Now come back to our problem of sampling proper colorings. Suppose
𝑋𝑡 , 𝑌𝑡 are two proper colorings. We define the distance 𝑑 (𝑋𝑡 , 𝑌𝑡 ) as their
Hamming distance, i.e. the number of vertices colored differently in two
colorings. Our coupling of two chains is that we always choose the same
𝑣, 𝑐 in each step. The distance between two colorings can change at most 1
since only 𝑣 is affected. The possible changes can be divided into two kinds:

• Good move: 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and both change into 𝑐 successfully. It will
decrease distance by 1.
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• Bad move: 𝑋𝑡 (𝑣) = 𝑌𝑡 (𝑣), one succeeds and one fails in the changing. It
will increase distance by 1.

Consider the probabilities of two types of moves. For good moves, w.p.
𝑑 (𝑋𝑡 ,𝑌𝑡 )

𝑛 , 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and there are at least 𝑞 − 2Δ choices of 𝑐 to make it a
good move. So

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1] =Pr(𝑣,𝑐 ) ∈𝑉 ×[𝑞 ] [(𝑣, 𝑐) is a good move]

≥𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 𝑞 − 2Δ
𝑞

.

For bad moves, there exists a neighbor𝑤 of 𝑣 such that its color is different
in two colorings, and in one coloring𝑤 is of color 𝑐 . By a counting argu-
ment, we have

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] = Pr(𝑣,𝑐 ) ∈𝑉 ×[𝑞 ] [(𝑣, 𝑐) is a bad move] ≤ Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 2
𝑞
.

Therefore,

E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] − Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1]

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 ) +
Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 2
𝑞
− 𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 𝑞 − 2Δ

𝑞

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 )
(
1 − 𝑞 − 4Δ

𝑛𝑞

)
.

In the case 𝑞 > 4Δ, if we want

𝐷TV ≤
(
1 − 1

𝑛𝑞

)𝑡
𝑛 ≤ 𝜀,

we have the mixing time is bounded by

𝜏mix (𝜀) ≤ 𝑛𝑞 log
𝑛

𝜀
.

4 Spectrum of Reversible Markov Chains

Another advantage to use reversible chains is that their transition matrices
have real eigenvalues. This follows from the fact that those matrices are
essentially symmetric. As a result, we can apply tools in linear algebra
to study them. We now develop the spectral decomposition theorem for
reversible 𝑃 . First, we have the following spectral decomposition theorem
for symmetric 𝑃 :

Theorem 2 (Spectral Decomposition Theorem) If 𝑃 ∈ ℝ𝑛×𝑛 is a sym-
metric matrix, then it has 𝑛 real eigenvalues 𝜆1, . . . , 𝜆𝑛 with corresponding 𝑛
orthonormal eigenvectors 𝑣1, . . . , 𝑣𝑛 satisfying

𝑃 =
𝑛∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
T
𝑖 .
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If we let 𝑉 =
[
𝑣1, 𝑣2, . . . , 𝑣𝑛

]
and Λ = diag(𝜆1, . . . , 𝜆𝑛), then above can be

written in the matrix form
𝑃 = 𝑉Λ𝑉 T .

Now we prove a similar decomposition theorem for reversible 𝑃 . Suppose
𝑃 is reversible with respect to 𝜋 . Let Π = diag(𝜋) be the diagonal matrix
with Π(𝑖, 𝑖) = 𝜋 (𝑖). Define 𝑄 = Π

1
2 𝑃Π−

1
2 , then we can verify that 𝑄 is

symmetric:

𝑄 (𝑖, 𝑗) = 𝜋 (𝑖) 12 𝑃 (𝑖, 𝑗)𝜋 ( 𝑗)− 1
2 = 𝜋 ( 𝑗) 12 𝑃 ( 𝑗, 𝑖)𝜋 (𝑖)− 1

2 = 𝑄 ( 𝑗, 𝑖).

So we can apply the spectral decomposition theorem for 𝑄 , which yields

𝑄 =
𝑛∑
𝑖=1

𝜆𝑖𝑢𝑖𝑢
T
𝑖 ,

where 𝜆1, . . . , 𝜆𝑛 are eigenvalues of 𝑄 with corresponding orthonormal
eigenvectors 𝑢1, . . . , 𝑢𝑛 . If we let 𝑣𝑖 ≜ Π−

1
2𝑢𝑖 , then the above is equivalent to

𝑃 =
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2𝑢𝑖𝑢
T
𝑖 Π

1
2 =

𝑛∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
T
𝑖 Π.

We claim that 𝜆1, . . . , 𝜆𝑛 are eigenvalues of 𝑃 with corresponding eigen-
vectors 𝑣1, . . . , 𝑣𝑛 . To see this, we have for any 𝑗 ∈ [𝑛]:

𝑃𝑣 𝑗 =
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2𝑢𝑖𝑢
T
𝑖 Π

1
2 𝑣 𝑗

=
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2𝑢𝑖𝑢
T
𝑖 Π

1
2Π−

1
2𝑢 𝑗

= 𝜆 𝑗𝑣 𝑗 .

Everything looks nice if we equip ℝ𝑛 with the inner product ⟨·, ·⟩Π defined
as ⟨𝑥,𝑦⟩Π = 𝑥TΠ𝑦 =

∑𝑛
𝑖=1 𝜋 (𝑖)𝑥 (𝑖)𝑦 (𝑖). It is clear that 𝑣1, . . . , 𝑣𝑛 are orthonor-

mal with respect to the inner product:

⟨𝑣𝑖 , 𝑣 𝑗 ⟩Π =
0, if 𝑖 ≠ 𝑗 ;

1, if 𝑖 = 𝑗 .
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