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1 Proof of Fundamental Theorem of Markov Chains

In the last lecture, we introduced the following theorem.

Theorem 1 (Fundamental theorem of Markov chains) If a finite Markov
chain 𝑃 ∈ ℝ𝑛×𝑛 is irreducible and aperiodic, then it has a unique stationary
distribution 𝜋 ∈ ℝ𝑛 . Moreover, for any distribution 𝜇 ∈ ℝ𝑛 ,

lim
𝑡→∞

𝜇⊤𝑃𝑡 = 𝜋⊤ .

Today we give a proof of the theorem. To this end, we first study the prop-
erties of the transition matrix 𝑃 of an irreducible and aperiodic chain.
Then we introduce the notion of coupling, a powerful technique to ana-
lyze stochastic processes.

Claim 2 Let 𝑃 ∈ ℝ𝑛×𝑛 be an irreducible and aperiodic Markov chain. It holds
that

∃ 𝑡∗ : ∀ 𝑖, 𝑗 ∈ [𝑛] : 𝑃𝑡
∗ (𝑖, 𝑗) > 0 .

We use Lemma 3 to prove Claim 2.

Lemma 3 Let 𝑐1, 𝑐2, . . . , 𝑐𝑠 be a group of positive integers satisfying gcd(𝑐1, . . . , 𝑐𝑠 ) =
1. For any sufficiently large integer 𝑏, there exists 𝑦1, 𝑦2, . . . , 𝑦𝑠 ∈ ℕ such that That is, there exists some 𝑏0 > 0 such that

for any 𝑏 > 𝑏0, the diophantine equation
𝑐1𝑦1 + 𝑐2𝑦2 + · · · + 𝑐𝑠𝑦𝑠 = 𝑏 always has
non-negative solutions

𝑐1𝑦1 + 𝑐2𝑦2 + · · · 𝑐𝑠𝑦𝑠 = 𝑏.

Proof. By Bézout’s identity there exists 𝑥1, 𝑥2, . . . , 𝑥𝑠 ∈ ℤ such that

𝑐1𝑥1 + 𝑐2𝑥2 + · · · 𝑐𝑠𝑥𝑠 = 1 .

We apply induction on 𝑠 . The case 𝑠 = 1 trivially holds. Assume 𝑠 ≥ 2
and the lemma holds for smaller 𝑠 . Let 𝑔 = gcd(𝑐1, . . . , 𝑐𝑠−1). By induction
hypothesis, we know that
𝑎1
𝑔
·𝑥1+

𝑎2
𝑔
·𝑥2+· · ·+

𝑎𝑠−1
𝑔

·𝑥𝑠−1 = 𝑏′ ⇐⇒ 𝑎1 ·𝑥1+𝑎2 ·𝑥2+· · ·+𝑎𝑠−1𝑥𝑠−1 = 𝑔 ·𝑏′

has non-negative solutions for sufficiently large 𝑏′. Therefore, we only need
to prove that the equation

𝑔 · 𝑏′ + 𝑎𝑠 · 𝑥𝑠 = 𝑏 (1)

has nonegative solution (𝑏′, 𝑥𝑠 ) with sufficiently large 𝑏′ when 𝑏 is suffi-
ciently large. In other words, we need to prove for any 𝑏0 > 0, eq. (1) has
nonegative solution with 𝑏′ > 𝑏0 for any sufficiently large 𝑏.

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
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Note that gcd(𝑔, 𝑎𝑠 ) = 1, we can find integers (𝑦, 𝑥) such that

𝑔 · 𝑦 + 𝑎𝑠 · 𝑥 = 1 ⇐⇒ 𝑔 · (𝑏𝑦) + 𝑎𝑠 · (𝑏𝑥) = 𝑏.

Noting that for any 𝑘 ∈ ℤ≥0, we have 𝑔 · (𝑏𝑦 + 𝑘𝑎𝑠 ) + 𝑎𝑠 · (𝑏𝑥 − 𝑘𝑔) = 𝑏. We
need 𝑏𝑦 + 𝑘𝑎𝑠 > 𝑏0 and 𝑏𝑥 − 𝑘𝑔 ≥ 0, which are equivalent to

𝑏𝑥

𝑔
≥ 𝑘 >

𝑏0 − 𝑏𝑦
𝑎𝑠

.

We can always find such an integer 𝑘 if 𝑏 ≥ 𝑔(𝑏0 + 𝑎𝑠 ). ates that there exists
large 𝑦1, 𝑦2 ∈ ℕ such that 𝑐1𝑦1 + 𝑐2𝑦2 = 𝑏 for sufficiently large 𝑏 and the
larger 𝑏 is, the larger 𝑦1 and 𝑦2 can be. □
Proof of Claim 2. The property of irreducibility implies that

∀ 𝑖, 𝑗 : ∃ 𝑡 : 𝑃𝑡 (𝑖, 𝑗) > 0 .

Suppose that there are 𝑠 loops of length 𝑐1, 𝑐2, . . . , 𝑐𝑠 starting from and
ending at state 𝑖 . Then by aperiodicity we have

gcd(𝑐1, 𝑐2, . . . , 𝑐𝑠 ) = 1 .

For any sufficiently large𝑚 and any pair of states (𝑖, 𝑗), by Lemma 3 and
irreducibility, there exists a path from 𝑖 to 𝑗 with exactly𝑚 steps. Thus,
there exist 𝑡∗ > 0 such that for any state pair (𝑖, 𝑗), 𝑃𝑡∗ (𝑖, 𝑗) > 0. Further-
more, for any 𝑡 > 𝑡∗, 𝑃𝑡 (𝑖, 𝑗) > 0 for any 𝑖, 𝑗 ∈ Ω.

□

1.1 Proof of Fundamental Theorem

Proof. We already know that 𝑃 has a stationary distribution 𝜋 . What we
would like to show is that for all starting distribution 𝜇0, it holds that

lim
𝑡→∞

𝐷TV (𝜇𝑡 , 𝜋) = 0 ,

where 𝜇T𝑡 = 𝜇T0𝑃
𝑡 .

Suppose that {𝑋𝑡 } and {𝑌𝑡 } are two identical Markov chains starting
from different distribution, where 𝑌0 ∼ 𝜋 while 𝑋0 is generated from an
arbitrary distribution 𝜇0.

Now we have two sequence of random variables:

𝜇0 𝜇1 𝜇𝑡
≀ ≀ ≀
𝑋0 → 𝑋1 → 𝑋2 → · · · → 𝑋𝑡 → 𝑋𝑡+1 → · · ·

𝑌0 → 𝑌1 → 𝑌2 → · · · → 𝑌𝑡 → 𝑌𝑡+1 → · · ·
≀ ≀ ≀
𝜋 𝜋 𝜋
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The coupling lemma establishes the connection between the distance
of distributions and the discrepancy of random variables. To show that
𝐷TV (𝜇𝑡 , 𝜋) → 0, it is sufficient to construct a coupling 𝜔𝑡 of 𝜇𝑡 and 𝜋 and
then compute Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ].

Here we give a simple coupling. Let (𝑋𝑡 , 𝑌𝑡 ) ∼ 𝜔𝑡 and we construct 𝜔𝑡+1.
If 𝑋𝑡 = 𝑌𝑡 for some 𝑡 ≥ 0, then let 𝑋𝑡 ′ = 𝑌𝑡 ′ for all 𝑡 ′ > 𝑡 , otherwise 𝑋𝑡+1 and
𝑌𝑡+1 are independent. Namely, {𝑋𝑡 } and {𝑌𝑡 } are two independent Markov
chains until 𝑋𝑡 and 𝑌𝑡 reach the same state for some 𝑡 ≥ 0, and once they
meet together then they move together forever. The coupling lemma tells us
that 𝐷TV (𝜇𝑡 , 𝜋) ≤ Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ].

Let 𝑡∗ be the same 𝑡∗ with Claim 2. Let 𝛼 be a positive constant such that
𝑃𝑡

∗ (𝑖, 𝑗) ≥ 𝛼 > 0 for any state pair (𝑖, 𝑗). Define event 𝐵 as {∃𝑡 < 𝑡∗, 𝑋𝑡 = 𝑌𝑡 }.
We have that

Pr [𝑋𝑡∗ = 𝑌𝑡∗ ] = Pr [𝑋𝑡∗ = 𝑌𝑡∗ ∧ 𝐵] + Pr
[
𝑋𝑡∗ = 𝑌𝑡∗ ∧ 𝐵

]
(2)

Suppose
{
𝑋 ′
𝑡

}
and

{
𝑌 ′
𝑡

}
are two independent Markov chains with transition

matrix 𝑃 and 𝑋 ′
0 ∼ 𝜇0 and 𝑌 ′

0 ∼ 𝜋 . The only difference between
({
𝑋 ′
𝑡

}
,
{
𝑌 ′
𝑡

})
and ({𝑋𝑡 } , {𝑌𝑡 }) is that

{
𝑋 ′
𝑡

}
and

{
𝑌 ′
𝑡

}
are independent all the time. Then

Pr
[
𝑋𝑡∗ = 𝑌𝑡∗ = 1 ∧ 𝐵

]
= Pr

[
𝑋 ′
𝑡∗ = 𝑌

′
𝑡∗ = 1 ∧ 𝐵

]
= Pr

[
𝑋 ′
𝑡∗ = 1

]
· Pr

[
𝑌 ′
𝑡∗ = 1

]
−

𝑡∗−1∑
𝑡=0

∑
𝑧∈[𝑛]

Pr
[
𝑋 ′
𝑡 = 𝑌

′
𝑡 = 𝑧 ∧ ∀𝑠 < 𝑡, 𝑋 ′

𝑠 ≠ 𝑌
′
𝑠

]
· Pr

[
𝑋 ′
𝑡∗ = 1

�� 𝑋 ′
𝑡 = 𝑧

]
· Pr

[
𝑌 ′
𝑡∗ = 1

�� 𝑌 ′
𝑡 = 𝑧

]
.

Note that

Pr [𝑋𝑡∗ = 𝑌𝑡∗ ∧ 𝐵] ≥ Pr [𝑋𝑡∗ = 𝑌𝑡∗ = 1 ∧ 𝐵]

=
𝑡∗−1∑
𝑡=0

∑
𝑧∈[𝑛]

Pr [𝑋𝑡 = 𝑌𝑡 = 𝑧 ∧ ∀𝑠 < 𝑡, 𝑋𝑠 ≠ 𝑌𝑠 ] · Pr [𝑋𝑡∗ = 1 | 𝑋𝑡 = 𝑧]

=
𝑡∗−1∑
𝑡=0

∑
𝑧∈[𝑛]

Pr
[
𝑋 ′
𝑡 = 𝑌𝑡 = 𝑧 ∧ ∀𝑠 < 𝑡, 𝑋 ′

𝑠 ≠ 𝑌
′
𝑠

]
· Pr

[
𝑋 ′
𝑡∗ = 1

�� 𝑋 ′
𝑡 = 𝑧

]
.

Thus, Equation (2)≥ Pr
[
𝑋 ′
𝑡∗ = 1

]
· Pr

[
𝑌 ′
𝑡∗ = 1

]
≥ 𝛼2.

By the coupling and the Markov property, we have

Pr [𝑋2𝑡∗ ≠ 𝑌2𝑡∗ ] = Pr [𝑋2𝑡∗ ≠ 𝑌2𝑡∗ |𝑋𝑡∗ = 𝑌𝑡∗ ] Pr [𝑋𝑡∗ = 𝑌𝑡∗ ]
+ Pr [𝑋2𝑡∗ ≠ 𝑌2𝑡∗ |𝑋𝑡∗ ≠ 𝑌𝑡∗ ] Pr [𝑋𝑡∗ ≠ 𝑌𝑡∗ ]

≤ Pr [𝑋2𝑡∗ ≠ 𝑌2𝑡∗ |𝑋𝑡∗ ≠ 𝑌𝑡∗ ] Pr [𝑋𝑡∗ ≠ 𝑌𝑡∗ ]
≤ (1 − 𝛼2)2 .

Then we have Pr [𝑋𝑘𝑡∗ ≠ 𝑌𝑘𝑡∗ ] ≤ (1 − 𝛼2)𝑘 by recursion. It yields that

Pr [𝑋𝑡 ≠ 𝑌𝑡 ] =
∑

𝑥0,𝑦0∈[𝑛]
𝜇0 (𝑥0) · 𝜋 (𝑦0) · Pr [𝑋𝑡 ≠ 𝑌𝑡 |𝑋0 = 𝑥0, 𝑌0 = 𝑦0] → 0

as 𝑡 → ∞.
□
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2 Mixing Time

We are ready to study the convergence rate of Markov chains. We start with
the notion of mixing time. For any 𝜀 > 0, the mixing time of a Markov chain
𝑃 up to error 𝜀 is the minimun step 𝑡 such that if we run the Markov chain
from any initial distribution, its total variation distance to the stationary
distribution is at most 𝜀. Formally,

𝜏mix (𝜀) := argmin
𝑡≥0

max
𝜇0

𝐷TV (𝜇𝑡 , 𝜋) ≤ 𝜀.

We usually denote 𝜏mix (1/4) by 𝜏mix.

2.1 Mixing time via Coupling

Recalling in our proof of FTMC using the coupling argument, we obtain the
following inequality

𝐷TV (𝜇𝑡 , 𝜋) ≤ Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ] .

Therefore, if we can construct a coupling 𝜔𝑡 such that Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ] ≤
𝜀, then 𝜏mix (𝜀) ≤ 𝑡 .

In practice, it is sufficient to assume 𝑋𝑡 and 𝑌𝑡 are from two arbitrary
initial distributions (Why?).

Example 1 (Random walk on hypercube) Consider the random walk on the
𝑛-cube. The state space Ω = {0, 1}𝑛 , and we start from a point 𝑋0 ∈ Ω. In each
step,

• With probability 1
2 do nothing.

• Otherwise, pick 𝑖 ∈ [𝑛] uniformly at random and flip 𝑋 (𝑖).

It’s equivalent to the following process:

• Pick 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1} uniformly at random.

• Change 𝑋 (𝑖) to 𝑏.

Now we analyze the mixing time of the process using coupling. Then apply
the following simple coupling rule: We couple two walks 𝑋𝑡 and 𝑌𝑡 by choosing
the same 𝑖, 𝑏 in every step.

Once a position 𝑖 ∈ [𝑛] has been picked, 𝑋𝑡 (𝑖) and 𝑌𝑡 (𝑖) will be the same
forever. Therefore, the problem again reduces to the coupon collector problem.
So we immediately have

𝜏mix (𝜀) ≤ 𝑛 log
𝑛

𝜀
.

Let’s modify the process a bit by changing 1
2 into

1
𝑛+1 , i.e. w.p.

1
𝑛+1 do noth-

ing, to make the lazy walk more active. Note that we add the lazy move in
order to make the chain aperiodic.
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Now in this case, we describe another coupling of 𝑋𝑡 , 𝑌𝑡 . Without loss of
generality, we can reorder the entries of two vectors so that all disagreeing
entries come first. Namely there exists an index 𝑘 such that 𝑋𝑡 (𝑖) ≠ 𝑌𝑡 (𝑖) if
1 ≤ 𝑖 ≤ 𝑘 , and 𝑋𝑡 (𝑖) = 𝑌𝑡 (𝑖) for 𝑖 > 𝑘 . Our coupling is as follows:

• If 𝑘 = 0, 𝑌 acts the same as 𝑋 .

• If 𝑘 = 1, 𝑌 acts the same as 𝑋 except when 𝑋 flips the first entry, 𝑌 does
nothing and vice versa.

• For 𝑘 > 2, we distinguish between whether 𝑋 flip indices in [𝑘]:

– If 𝑋 did nothing or flipped one of 𝑖 > 𝑘 : 𝑌 acts the same.

– If 𝑋 flipped 1 ≤ 𝑖 ≤ 𝑘 : 𝑌 flips (𝑖 mod 𝑘) + 1, i.e. 1 ↦→ 2, 2 ↦→
3, · · · , 𝑘 − 1 ↦→ 𝑘, 𝑘 ↦→ 1.

It’s clear that the above is indeed a coupling. In fact, this coupling acts like
a doubled speed coupon collector, since in the case 𝑘 > 2 we can always collect
two coupons at a time when lady luck is smiling. It is therefore conceivable
that

𝜏mix ≤
1
2
𝑛 log𝑛 +𝑂 (𝑛).

Example 2 (Shuffling Cards) Given a deck of 𝑛 cards, consider the following
rule of shuffling

• pick a card uniformly at random;

• put the card on the top.

The shuffling rule can be viewed as a random walk on all 𝑛! permutations
of the 𝑛 cards and it is easy to verify that the uniform distribution is the sta-
tionary distribution. Let us design a coupling for this Markov chain. That is,
let 𝑋𝑡 and 𝑌𝑡 be decks of cards, and we construct 𝑋𝑡+1 and 𝑌𝑡+1 by picking the
same random card and put it on the top.

Note that we are picking the same card, not the card at the same location.
That is, we draw a random card from 𝑋𝑡 , say ♡𝐾 , and then we pick ♡𝐾 in 𝑌𝑡
as well.

This is clearly a coupling, and once some card ♡𝐾 has been picked, then
♡𝐾 in two decks will be always at the same location. Therefore, if we ask in
how many rounds 𝑇 , 𝑋𝑇 = 𝑌𝑇 , then the question is equivalent to the coupon
collector problem we met before.

Therefore, for 𝑇 ≥ 𝑛 log𝑛 + 𝑐𝑛, we know

Pr [𝑋𝑇 ≠ 𝑌𝑇 ] ≤ 𝑒−𝑐 .

This implies
𝜏mix (𝜀) ≤ 𝑛 log

𝑛

𝜀
.
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