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We already met Markov chains in previous lectures, e.g. the random walk
on ℤ. We will formally introduce the model and study its properties. This is
an important probabilistic tool for modeling in computer science as well as
a powerful tool for designing efficient algorithms.

1 Basics of Markov Chains

Consider the random walk on ℤ. One starts at 0 and in each round, he
tosses a fair coin to determine the direction of moving: with probability 50%
to the left and 50% to the right. We use 𝑋𝑡 ∈ {−1, 1} to denote his movement
at time 𝑡 , and 𝑍𝑡 = 𝑍𝑡−1 + 𝑋𝑡 to denote his position at time 𝑡 .

Definition 1 (Markov Chain) A sequence of random variables 𝑋0, 𝑋1, . . . is a
Markov chain if and only if for any 𝑡 and any 𝑎0, 𝑎1, . . . , 𝑎𝑡+1,

Pr [𝑋𝑡+1 = 𝑎𝑡+1 | 𝑋0 = 𝑎0, 𝑋1 = 𝑎1, . . . , 𝑋𝑡 = 𝑎𝑡 ] = Pr [𝑋𝑡+1 = 𝑎𝑡+1 | 𝑋𝑡 = 𝑎𝑡 ] .

The {𝑍𝑡 }𝑡 ≥ 0 above is a simple Markov chain, since the position at time 𝑡
only depends on the position at time 𝑡 − 1.

We usually use Ω to denote the state space, meaning all possible values
that 𝑋𝑡 can take. Today we only consider the case when Ω = [𝑛] is finite
and the Markov chain is time-homogeneous. A time-homogenous Markov
chain can be characterized by a 𝑛 ×𝑛 transition matrix 𝑃 =

(
𝑝𝑖 𝑗

)
𝑖, 𝑗∈[𝑛] where

𝑝𝑖 𝑗 = Pr [𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖] for all 𝑡 ≥ 0 since the transition probabilities do
not depend on time. In general, a Markov chain can be equivalently viewed The transition matrix must be a stochastic

matrix since
∑

𝑗 𝑝𝑖 𝑗 = 1 for each 𝑖 , i.e. the
row sum of 𝑃 is 1.

as a random walk on a weighted directed graph where the edge weight from
𝑖 to 𝑗 means the probability of moving to vertex 𝑗 when one is standing at
vertex 𝑖 . Consider the three-vertex graph on the right.

It corresponds to the Markov chain with transition matrix 𝑃 = (𝑝𝑖 𝑗 ) =
1/2 3/8 1/8
1/3 0 2/3
1/4 3/4 0

 . We sometimes call the graph the transition graph of 𝑃 .

At any time 𝑡 ≥ 0, we use 𝜇𝑡 ∈ Δ𝑛−1 to denote the distribution of 𝑋𝑡

meaning
𝜇𝑡 (𝑖) ≜ Pr [𝑋𝑡 = 𝑖] .

By the law of total probability, 𝜇𝑡+1 ( 𝑗) =
∑

𝑖 𝜇𝑡 (𝑖) · 𝑝𝑖 𝑗 , we have 𝜇T𝑡 𝑃 = 𝜇T𝑡+1.
As a result, we have

Proposition 2 𝜇T𝑡 = 𝜇T0𝑃
𝑡 .
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This is a useful formula as we can compute the distribution at any time
given the initial distribution and the transition matrix.

Sometimes, we will simply denote the transition matrix 𝑃 as the Markov
chain for convenience.

1.1 Stationary Distribution

Definition 3 A distribution 𝜋 is a stationary distribution of 𝑃 if it remains
unchanged in the Markov chain as time progresses, i.e.,

𝜋⊤𝑃 = 𝜋⊤ .

One of the major algorithmic applications of Markov chains is the
Markov chain Monte Carlo (MCMC) method. It is a general method for
designing an algorithm to sample from a certain distribution 𝜋 . The idea of
MCMC is

• First design a Markov Chain of which the stationary distribution is the
desired 𝜋 ;

• Simulate the chain from a certain initial distribution for a number of
steps and output the state.

Therefore, we hope that the distribution 𝜇𝑡 is close to 𝜋 when 𝑡 is large
enough.

We already met, and implemented the MCMC method many time –
shuffling a deck of cards. After a few operations, a good shuffling rule
would produce a card order that is close to the uniform.

One of the main purposes of the course is to understand the MCMC
method. Therefore, the following four basic questions regarding stationary
distributions are important.

• Does each Markov chain have a stationary distribution?

• If a Markov chain has a stationary distribution, is it unique?

• If the chain has a unique stationary distribution, does 𝜇𝑡 always converge
to it from any 𝜇0?

• If 𝜇𝑡 always converges to the stationary distribution, what is the rate of
convergence?

We will settle the first three questions today. The fourth question, the
rate of convergence, will be the topic of coming lectures.

2 Fundamental Theorem of Markov Chains

2.1 The Existence of Stationary Distribution

We will show that, for every finite Markov chain 𝑃 , there exists some 𝜋
such that 𝜋⊤𝑃 = 𝜋⊤. Observe that this is equivalent to "1 is an eigenvalue of
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𝑃T with a nonnegative eigenvector (𝑃⊤𝜋 = 𝜋 )".
We use the following theorem in linear algebra.

Theorem 4 (Perron-Frobenius Theorem) . Each nonnegative matrix 𝐴 has a
nonnegative real eigenvector 𝑥 with eigenvalue 𝜆 = 𝜌 (𝐴) = max {|𝜆𝑖 |}, where
{𝜆1, . . . , 𝜆𝑛} are eigenvalues of 𝐴.

Let 𝐴 = (𝑎𝑖 𝑗 )𝑖∈ [𝑛], 𝑗 ∈ [𝑚] . We say 𝐴
is nonnegative (resp. positive) if every
𝑎𝑖 𝑗 ≥ 0 (resp. > 0).

We will prove the Perron-Frobenius theorem in Section 2.3.
Since 𝑃 is a stochastic matrix, we have

𝑃 · 1 = 1.

Thus, 𝑃 has an eigenvalue 1. Since every eigenvalue of 𝑃 is no larger than
the row sum, 1 is the largest eigenvalue. Also, 𝑃⊤ shares the same charac-
teristic polynomial with 𝑃 , which implies the eigenvalues of 𝑃⊤ and 𝑃 are
the same. As a result, 𝜌 (𝑃⊤) also equals to 1. According to Perron-Frobenius
theorem, there exists a nonnegative eigenvector 𝜋 such that

𝑃⊤𝜋 = 𝜋,

which is equivalent to
𝜋⊤𝑃 = 𝜋⊤ .

It then follows that 𝜋
∥𝜋 ∥1 is a stationary distribution of 𝑃 .

2.2 Uniqueness and Convergence

Consider the Markov chain with two states on the right. Clearly, the transi-
tion matrix of this Markov chain is

𝑃 =

[
1 − 𝑝 𝑝

𝑞 1 − 𝑞

]
It is easy to verify that

𝜋 =

(
𝑞

𝑝 + 𝑞 ,
𝑝

𝑝 + 𝑞

)⊤
is a stationary distribution of 𝑃 . We are going to check whether starting
from any 𝜇0, the distribution 𝜇𝑡 will always converge to 𝜋 , i.e.,

lim
𝑡→∞

𝜇T0𝑃𝑡 − 𝜋T
 = 0.

In our example, the distribution has only two dimensions and the sum of
the two components equals to 1, so we only need to check whether the first
dimension converges, i.e., ��𝜇T0𝑃𝑡 (1) − 𝜋 (1)

�� → 0.
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Now we define

Δ𝑡 ≜ | 𝜇𝑡 (1) − 𝜋 (1) |
=
�� 𝜇𝑇𝑡−1 · 𝑃 (1) − 𝜋 (1)

��
=

���� (1 − 𝑝) · 𝜇𝑡−1 (1) + 𝑞 · (1 − 𝜇𝑡−1 (1)) −
𝑞

𝑝 + 𝑞

����
=

���� (1 − 𝑝 − 𝑞) · 𝜇𝑡−1 (1) + 𝑞 ·
(
1 − 1

𝑝 + 𝑞

) ����
= |1 − 𝑝 − 𝑞 | · Δ𝑡−1

Therefore, we can see that Δ𝑡 → 0 except in the two cases: * 𝑝 = 𝑞 = 0, *
𝑝 = 𝑞 = 1.

In fact, the two cases prevent convergence for different reasons.
Let us first consider the case when 𝑝 = 𝑞 = 0. The Markov chain looks

like:

The transition walk graph is disconnected, so it can be partitioned into
two disjoint components. Since each component is still a Markov chain,
each of them has its own stationary distribution. Notice that any convex
combination of these small distributions is a stationary distribution for the
whole Markov chain. It immediately follows that in this case the stationary
distribution is not unique. It gives a negative answer to the second question.

This observation motivates us to define the following:

Definition 5 (Irreducibility) A finite Markov chain is irreducible if its
transition graph is strongly connected.

If the transition graph of 𝑃 is not strongly connected, we say 𝑃 is re-
ducible.

When 𝑝 = 𝑞 = 1, the Markov chain looks like this:

This transition graph is bipartite. It is easy to see that ( 12 ,
1
2 ) is the unique

stationary distribution of it. However, for 𝜇0 = (1, 0), one can see that
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𝜇𝑡 oscillates between "left" and "right". Therefore, the answer to the third
question is no.

This phenomenon is captured by the following notion:

Definition 6 (Aperiodicity) A Markov chain is aperiodic if for any state 𝑣 , it
holds that

gcd {|𝑐 | | 𝑐 ∈ 𝐶𝑣} = 1,

where 𝐶𝑣 denotes the set of the directed cycles containing 𝑣 in the transition
graph.

Otherwise, we say the chain periodic.
We have the following important theorem.

Theorem 7 (Fundamental theorem of Markov chains) If a finite Markov
chain 𝑃 ∈ ℝ𝑛×𝑛 is irreducible and aperiodic, then it has a unique stationary
distribution 𝜋 ∈ ℝ𝑛 . Moreover, for any distribution 𝜇 ∈ ℝ𝑛 ,

lim
𝑡→∞

𝜇T𝑃𝑡 = 𝜋T .

Although there are many ways to prove the theorem, we will present
one based on the so called coupling argument, which will be quite useful in
answering the fourth question.

2.3 Proof of Perron-Frobenius Theorem

Most proofs in the section are from [Mey00]. We first prove the Perron-
Frobenius theorem for positive matrices. Then we use this theorem and
Lemma 9 to prove Theorem 4.

In the following statement, we use | · | to denote a matrix or vector of
absolute values, i.e., |𝐴| is the matrix with entries |𝑎𝑖 𝑗 |. We say a vector
or matrix is larger than 0 if all its entries are larger than 0 and denote it
by 𝐴 > 0. We define the operation ≥, ≤ and < for vectors and matrices
similarly.

Theorem 8 (Perron-Frobenius Theorem for Positive Matrices) Each
positive matrix 𝐴 > 0 has a positive real eigenvalue 𝜌 (𝐴), and 𝜌 (𝐴) has a
corresponding positive eigenvector.

Proof. We first prove that 𝜌 (𝐴) > 0. If 𝜌 (𝐴) = 0, then all the eigenvalues
of 𝐴 is 0 which is equivalent to that 𝐴 is nilpotent. This is impossible since
every 𝑎𝑖 𝑗 > 0. Thus 𝜌 (𝐴) > 0 for positive matrix 𝐴.

Assume that 𝜆 is the eigenvalue of 𝐴 that |𝜆 | = 𝜌 (𝐴). Then we have

|𝜆 | |𝑥 | = |𝜆𝑥 | = |𝐴𝑥 | ≤ |𝐴| |𝑥 | = 𝐴|𝑥 |.

Then we show that |𝜆 | |𝑥 | < 𝐴|𝑥 | is impossible. Let 𝑧 = 𝐴|𝑥 | and 𝑦 =

𝑧−𝜌 (𝐴) |𝑥 |. Assume that 𝑦 ≠ 0, We have that 𝐴𝑦 > 0. There must exist some



[cs3958: lecture 10] discrete markov chains, fundamental theorem of markov chains, coupling 6

𝜖 > 0 such that 𝐴𝑦 > 𝜖𝜌 (𝐴) · 𝑧 or equivalently, 𝐴
(1+𝜖 )𝜌 (𝐴) 𝑧 > 𝑧. Successively

multiply both sides of 𝐴
(1+𝜖 )𝜌 (𝐴) 𝑧 > 𝑧 by 𝐴

(1+𝜖 )𝜌 (𝐴) and we have(
𝐴

(1 + 𝜖)𝜌 (𝐴)

)𝑘
𝑧 > · · · > 𝐴

(1 + 𝜖)𝜌 (𝐴) 𝑧 > 𝑧, for 𝑘 = 1, 2, . . . .

Note that lim𝑘→∞
(

𝐴
(1+𝜖 )𝜌 (𝐴)

)𝑘
→ 0 because 𝜌

(
𝐴

(1+𝜖 )𝜌 (𝐴)

)
= 𝜌 (𝐴)

(1+𝜖 )𝜌 (𝐴) < 1.
Then, in the limit, 𝑧 < 0. This conflicts the fact that 𝑧 > 0. The assumption
that 𝑦 ≠ 0 is invalid

Thus we have 𝑦 = 0 which means 𝜌 (𝐴) is a positive eigenvalue of 𝐴 and
|𝑥 | is the corresponding eigenvector. Since 𝜌 (𝐴) |𝑥 | = 𝐴|𝑥 | > 0, we have
|𝑥 | > 0. □

Lemma 9 For 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 , if |𝐴| ≤ 𝐵, then 𝜌 (𝐴) ≤ 𝜌 (𝐵).

Proof. By spectral radius formula, we have that for any sub-multiplicative
norm ∥·∥, 𝜌 (𝐴) = lim𝑘→∞

𝐴𝑘
 1
𝑘 and 𝜌 (𝐵) = lim𝑘→∞

𝐵𝑘 1
𝑘 .

Note that since |𝐴| ≤ 𝐵, we have |𝐴|𝑘 ≤ 𝐵𝑘 for 𝑘 ∈ ℕ \ {0}. Then𝐴𝑘

∞ ≤

|𝐴|𝑘
∞

≤
𝐵𝑘∞ and sequentially

𝐴𝑘
 1
𝑘

∞ ≤
𝐵𝑘 1

𝑘

∞. Thus,
𝜌 (𝐴) ≤ 𝜌 (𝐵). □

Theorem 10 (Theorem 4 restated). Each nonnegative matrix 𝐴 has a nonneg-
ative real eigenvalue with spectral radius 𝜌 (𝐴) = 𝑎, and 𝑎 has a corresponding
nonnegative eigenvector.

Proof. Construct a matrix sequence {𝐴𝑘 }∞𝑘=1 by letting 𝐴𝑘 = 𝐴+ E
𝑘 where E

is the matrix of all 1’s. Let 𝑎𝑘 = 𝜌 (𝐴𝑘 ) > 0 and 𝑥𝑘 > 0 is the corresponding
eigenvector.1 Without loss of generality, let ∥𝑥𝑘 ∥1 = 1. Since {𝑥𝑘 }∞𝑘=1 is 1 The existance of such 𝑥𝑘 is guaranteed by

Theorem 8.bounded, by BolzanoWeierstrass theorem, there exists a subsequence of
{𝑥𝑘 }∞𝑘=1 in ℝ𝑛 that is convergent. Denote this convergent subsequence by{
𝑥𝑘𝑖

}∞
𝑖=1 and

{
𝑥𝑘𝑖

}∞
𝑖=1 → 𝑧 where 𝑧 ≥ 0 and 𝑧 ≠ 0 (for each 𝑥𝑘𝑖 satisfies that𝑥𝑘𝑖 1 = 1). Since {𝐴𝑘 }∞𝑘=1 is monotone decreasing, by Lemma 9, we have

that 𝑎1 ≥ · · · ≥ 𝑎𝑘 ≥ 𝑎. Sequence {𝑎𝑘 }∞𝑘=1 is nonincreasing and bounded, so
lim𝑘→∞ 𝑎𝑘 → 𝑎∗ exists and lim𝑖→∞ 𝑎𝑘𝑖 → 𝑎∗ ≥ 𝑎. Then we have

𝐴𝑧 = lim
𝑖→∞

𝐴𝑘𝑖𝑥𝑘𝑖 = lim
𝑖→∞

𝑎𝑘𝑖𝑥𝑘𝑖 = 𝑎∗𝑧.

Thus, 𝑎∗ is an eigenvalue of 𝐴 and 𝑎∗ ≤ 𝑎. Then we have 𝑎∗ = 𝑎. So 𝐴 has
a nonnegative real eigenvalue 𝑎 and 𝑧 is the corresponding nonnegative
eigenvetor. □

3 Coupling

3.1 Total Variation Distance

Definition 11 The total variation distance between two distributions 𝜇 and 𝜈
on a countable state space Ω is given by

𝐷TV (𝜇, 𝜈) =
1
2

∑
𝑥∈Ω

|𝜇 (𝑥) − 𝜈 (𝑥) |.

https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
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We can look at the figure of two distributions on the sample space. The
total variation distance is half the area enclosed by the two curves.

The total variation distance can be equivalently viewed in the following
way.

Lemma 12 We define 𝜇 (𝐴) = ∑
𝑥∈𝐴

𝜇 (𝑥), 𝜈 (𝐴) = ∑
𝑥∈𝐴 𝜈 (𝑥), then we have

𝐷TV (𝜇, 𝜈) = max
𝐴⊆Ω

|𝜇 (𝐴) − 𝜈 (𝐴) |.

Proof. Let Ω+ ⊆ Ω be the set of states such that 𝜇 (𝑥) ≥ 𝜈 (𝑥), and let
Ω− ⊆ Ω be the set of states such that 𝜈 (𝑥) > 𝜇 (𝑥). It can be easily verified
that

max
𝐴⊆Ω

𝜇 (𝐴) − 𝜈 (𝐴) = 𝜇 (Ω+) − 𝜈 (Ω+),

max
𝐴⊆Ω

𝜈 (𝐴) − 𝜇 (𝐴) = 𝜈 (Ω−) − 𝜇 (Ω−).

By 𝜇 (Ω) = 𝜈 (Ω) = 1,

𝜇 (Ω+) + 𝜇 (Ω−) = 𝜈 (Ω+) + 𝜈 (Ω−) = 1,

which implies that

𝜇 (Ω+) − 𝜈 (Ω+) = 𝜈 (Ω−) − 𝜇 (Ω−).

We derive that

max
𝐴⊆Ω

|𝜈 (𝐴) − 𝜇 (𝐴) | = 𝜈 (Ω−) − 𝜇 (Ω−) = 𝜇 (Ω+) − 𝜈 (Ω+).

Therefore,

𝐷TV (𝜇, 𝜈) =
∑
𝑥∈Ω

1
2
|𝜇 (𝑥) − 𝜈 (𝑥) |

=
1
2
(��𝜇 (Ω+) − 𝜈 (Ω+)

�� + |𝜇 (Ω−) − 𝜈 (Ω−) |
)

= max
𝐴⊆Ω

|𝜈 (𝐴) − 𝜇 (𝐴) |.

□

3.2 The Coupling Lemma

The coupling of two distributions is simply a joint distribution of them.

Definition 13 (Coupling) Let 𝜇 and 𝜈 be two distributions on the same space
Ω. Let 𝜔 be a distribution on the space Ω × Ω. If (𝑋,𝑌 ) ∼ 𝜔 satisfies 𝑋 ∼ 𝜇

and 𝑌 ∼ 𝜈 , then 𝜔 is called a coupling of 𝜇 and 𝜈 .

In other words, the marginal probabilities of the disjoint distribution 𝜔

are 𝜇 and 𝜈 respectively. A special case is when 𝑋 and 𝑌 are inde-
pendent. However, in many applications,
we want 𝑋 and 𝑌 to be correlated while
keeping their respect marginal probabilities
correct.
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We now give a toy example about how to construct different couplings
on two fixed distributions. There are two coins: the first coin has probabil-
ity 1

2 for head in a toss and 1
2 for tail, and the second coin has probability 1

3
and 2

3 respectively. We now construct two couplings as follows.
The table defines a joint distribition and the sum of a certain row/column

equal to the corresponding marginal probability. It is clear that both table
are couplings of the two coins. Among all the possible couplings, sometimes
we are interested in the one who is "mostly coupled".

Lemma 14 (Coupling Lemma) Let 𝜇 and 𝜈 be two distributions on a sample
space Ω. Then for any coupling 𝜔 of 𝜇 and 𝜈 it holds that,

Pr(𝑋,𝑌 )∼𝜔 [𝑋 ≠ 𝑌 ] ≥ 𝐷TV (𝜇, 𝜈).

And furthermore, there exists a coupling 𝜔∗ of 𝜇 and 𝜈 such that

Pr(𝑋,𝑌 )∼𝜔∗ [𝑋 ≠ 𝑌 ] = 𝐷TV (𝜇, 𝜈).

Let us prove the coupling lemma. For finite Ω, designing a coupling
is equivalent to filling a Ω × Ω matrix in the way that the marginals are
correct.

Clearly we have

Pr [𝑋 = 𝑌 ] =
∑
𝑡 ∈Ω

Pr [𝑋 = 𝑌 = 𝑡]

≤
∑
𝑡 ∈Ω

min {𝜇 (𝑡), 𝜈 (𝑡)} .

Thus,

Pr [𝑋 ≠ 𝑌 ] ≥ 1 −
∑
𝑡 ∈Ω

min (𝜇 (𝑡), 𝜈 (𝑡))

=
∑
𝑡 ∈Ω

(𝜇 (𝑡) −min {𝜇 (𝑡), 𝜈 (𝑡)})

= max
𝐴⊆Ω

{𝜇 (𝐴) − 𝜈 (𝐴)}

= 𝐷TV (𝜇, 𝜈) .

To construct 𝜔∗ achieving the equality, for every 𝑡 ∈ Ω, we let

Pr(𝑋,𝑌 )∼𝜔∗ [𝑋 = 𝑌 = 𝑡] = min {𝜇 (𝑡), 𝜈 (𝑡)} .

I leave the construction of the off-diagonal entries of 𝜔∗ as an exercise.
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The coupling lemma provides a way to upper bound the distance be-
tween two distributions: For any two distributions 𝜇 and 𝜈 and any coupling
𝜔 of 𝜇 and 𝜈 , an upper bound for Pr(𝑋,𝑌 )∼𝜔 [𝑋 ≠ 𝑌 ] is an upper bound for
𝐷TV (𝜇, 𝜈). This is a quite useful approach to bound the total variation dis-
tance since the convergence of a Markov chain can be implied by that of the
total variance 𝐷TV (𝜇𝑡 , 𝜋). The coupling lemma also tells us that the upper
bound obtained in this way can be tight, as long as you are able to find the
optimal coupling. We will examine this in detail in the next lecture.
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