
[CS3958: Lecture 1] Introduction, Morris’s Algorithm,
Concentration
Instructor: Chihao Zhang, Scribed by Yulin Wang

September 24, 2022

1 Introduction to the Course

See topics and references for references of the course. The course mainly
consists of four parts.

1.1 Basic Probabilistic Tools

1.1.1 Concentration Inequalities

Concentration inequalities are ubiquitous in computer science. It is mainly
used to prove that some random process behaves close to its expectation.
Consider the following scenario: Given a (biased) coin which shows HEAD
with probability 𝑝 when tossed. We want to estimate the parameter 𝑝 .
Suppose we toss the coin 𝑇 times. Let 𝑋𝑖 ∼ Ber(𝑝) be the indicator of
whether the 𝑖-th toss gives HEAD, and 𝑋 be the average of 𝑋1, 𝑋2, . . . , 𝑋𝑇 . Ber(𝑝) is a Bernoulli distribution which

takes value 1 with probability 𝑝 and value 0
with probability 1 − 𝑝 . The expectation of
a Bernoulli random variable 𝑋 ∼ Ber(𝑝) is
E [𝑋] = 𝑝 .

We know that

E
[
𝑋

]
=

1
𝑇

𝑇∑
𝑡=1

E [𝑋𝑡] = 𝑝.

Concentration inequalities here provide bounds on how 𝑋 deviates from its
expectation 𝑝 , i.e. inequalities of the form

Pr
[��𝑋 − 𝑝 �� ≥ 𝜀

]
< 𝛿.

for parameters 𝜀, 𝛿 > 0.
We will establish several inequalities of this form in the course, and each

of them has its own scope of applicability.

1.1.2 Martingale

You have met martingales in the probability course. In this course, we will
first study concentration inequalities for martingales, which are impor-
tant tools to analyze random process. Then we will introduce the optional
stopping theorem (OST) for martingales. It is a powerful to argue about
processes involving a random stopping condition.

Example 1 Suppose there is a country in which people only want boys. In the
following three scenarios, is the sex ratio of the country 1 : 1

1. Each family continues to have children until they have a boy.

https://notes.sjtu.edu.cn/s/MRPbwynzK

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 2

2. Each family continues to have children until there are more boys.

3. Each family continues to have children until there are more boys or there
are 10 children.

In fact, in case 1 and 3, the sex ratio is 1 : 1, which can be justified by OST.

1.2 Optimization

1.2.1 Optimization

We shall study a few first-order optimization algorithms.

1.2.2 Online Optimization

We begin with a classic problem called Multi-Armed Bandit (MAB). It is a
simple model for reinforcement learning.

Example 2 (Two-Armed Bandits) Assume there is a two-armed bandit,
and the reward of each arm follows a Bernoulli distribution. Our target is to
maximize the expected reward of pulling the bandit for 𝑇 rounds.

The Explore-then-Commit(ETC) algorithm is a commonly used algorithm
for Multi-Armed Bandit. This strategy try to identify the best arm as soon
as possible, so it takes the most straightforward way that is trying each arm
a few times and picking the one with best empirical reward. In fact, it is
sub-optimal. We will introduce some more sophisticated algorithm for the
problem.

Next we introduce the general framework of online learning. Assume
there is a game that we play 𝑇 rounds. In each round 𝑡 = 1, 2, . . . ,𝑇 , we
choose to play 𝑥𝑡 and get reward 𝑓𝑡 (𝑥𝑡). The target is

max
𝑇∑
𝑡=1

𝑓𝑡 (𝑥𝑡).

Here we take 𝑥𝑡 from a set𝑉 ∈ ℝ𝑑 , and
𝑓1, 𝑓2, . . . , 𝑓𝑇 are functions from𝑉 to ℝ.Algorithms for offline optimization can be adapted to work in the online

setting.

1.3 Markov Chains and Sampling

Recall that optimization problem is that

min 𝑓 (𝑥) s.t. 𝑥 ∈ 𝐷.

In the task of sample, instead of find a point minimizing 𝑓 (𝑥), we sample
with density proportional to 𝑓 (𝑥). For example, given 𝑓 (𝑥) = 𝑒−𝑥

2/2, this is
equivalent to sample from standard Gaussian.

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 3

1.3.1 An application of Markov Chain Monte Carlo (MCMC)

An important application of MCMC is to estmate the volume of a set when
a membership oricle is given. For example, we want to measure the volume
of a figure 𝑆 in [−1, 1]𝑑 space. We can use Monte-Carlo algorithm directly:
sample points from [−1, 1]𝑑 uniformly and output the ratio of points lo-
cated in 𝑆 . However, if 𝑆 is a sphere at the origin with radius 1, the size of

−1 1

1

−1

𝑆

space [−1, 1]𝑑 is exponential in 𝑑 , while the volume of 𝑆 is upper bounded
by a constant. The probability that a point locating in 𝑆 is exponentially
small and therefore the cost for the Monte-Carlo algorithm to obtain an
reasonable estimate is huge.

Sometimes one can use Markov Chain Monte Carlo to construct a more
efficient estimator. Informally, instead of sampling from [−1, 1]𝑑 directly, we
construct a sequence of sets 𝑆1 ⊂ 𝑆2 ⊂ · · · ⊂ 𝑆𝑛 = 𝑆 , and compute the ratio
of volume for each pair of adjacent sets, i.e. |𝑆𝑖 ||𝑆𝑖+1 | for 𝑖 = 1, 2, . . . , 𝑛 − 1. This
can be done by constructing a random walk inside each 𝑆𝑖 . In this course,
we will develop tools to analyze such random walks.

1.3.2 Perspectives for studying MCMC

We shall develop tools from many different perspetives to study MCMC.

Stochastic Process: We consider Markov chains as a stochastic processes,
and use probabilistic methods such as martingales and the coupling
method to study its behavior.

Spectrum: We will study the spectrum of the transition matrices of Markov
chains using linear algebra tools.

Operator: We can more generally view Markov chains as linear operators
and analyze them using tools from functional analysis.

2 Concentration

Now we start to study basic concentration inequalities. As a motivating
example, let’s first look at the streaming model.

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 4

2.1 Streaming Model

Example 3 Suppose we have a router with limited memory, but need to solve
some computational tasks with large input data such as monitoring the id of
devices visiting it. We can ask the following three natural questions in this
scenario,

• How many numbers in a given data streaming?

• How many distinct numbers?

• What is the most frequent number?

In order to study these problems systematically, we now formally define the
streaming model.

In the streaming model, the input is a sequence 𝜎 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩
where each 𝑎𝑖 ∈ [𝑛]. We should notice that the data arrive one by one as
suggested by the word “streaming” in the name. We focus the following
basic problem:

• How many numbers in the stream (What is𝑚)?

Clearly we can maintain a counter 𝑘 , and whenever a number 𝑎𝑖 ar-
rives, increase 𝑘 by one. It is not hard to see that we need

⌈
log2𝑚

⌉
bits of

memory.
Can we design a more clever algorithm with only 𝑜 (log𝑚) memory?

It turns out that computing the exact answer is impossible even with⌈
log2𝑚

⌉
− 1 memory. The reason is as follows: suppose we have an al-

gorithmM using only
⌈
log2𝑚

⌉
− 1 memory. DenoteM(𝑖) as the output of

the algorithm with a input 𝜎 of length 𝑖 . Then there exists 𝑖, 𝑗 ∈ {𝑚} such
that 𝑖 ≠ 𝑗 whileM(𝑖) =M(𝑗).

Even though we can not get a better algorithm for the exact answer, it is
possible to save lots of memories if approximation is allowed. That is, for
every 𝜀 > 0, the algorithm computes a number𝑚 such that

1 − 𝜀 ≤ 𝑚

𝑚
≤ 1 + 𝜀

with high probability.
The Morris’ algorithm is presented as Algorithms 1. It is a randomized

algorithm. Therefore we look at the expectation of its output.

Theorem 1 The output of Morris’ algorithm𝑚 satisfies E [𝑚] =𝑚.

Proof. We prove it by induction on𝑚. Since 𝑋 = 1 when𝑚 = 1, we have
E [𝑚] = 1. Assume it is true for smaller𝑚, let 𝑋𝑖 denote the value of 𝑋 after

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 5

Input: An instance 𝜎 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩ where each 𝑎𝑖 ∈ [𝑛].
Output: The length𝑚 of the sequence 𝜎 .

1 𝑋 ←− 0;
2 On each input: 𝑋 ←− 𝑋 + 1 with probability 2−𝑋 ;
3 return 2𝑋 − 1

Algorithm 1:Morris’ Algorithms for Counting Elements

processing 𝑖-th input. We have the following fact,

E [𝑚] = E
[
2𝑋𝑚

]
− 1

=
𝑚∑
𝑖=0

Pr [𝑋𝑚 = 𝑖] · 2𝑖 − 1

=
𝑚∑
𝑖=0

(
Pr [𝑋𝑚−1 = 𝑖] ·

(
1 − 2−𝑖

)
+ Pr [𝑋𝑚−1 = 𝑖 − 1] · 21−𝑖

)
· 2𝑖 − 1

=
𝑚−1∑
𝑖=0

Pr [𝑋𝑚−1 = 𝑖] ·
(
2𝑖 + 1

)
− 1

= E
[
2𝑋𝑚−1

]
=𝑚

where the last equation holds due to the induction hypothesis. □
It it now clear that Morris’ algorithm is an unbiased estimator for𝑚 and

uses approximately 𝑂 (log log𝑚) bits of memory. However, for a practical
randomized algorithm, we further require its output to concentrate on the
expectation. That is, we want to establish concentration inequality of the How to analyze a Morris’ algorithm:

• Analyze its concentration

• Improve the concentration

We will learn more about concentration
later to study on this example.

form

Pr [|𝑚 −𝑚 | > 𝜀] ≤ 𝛿

for 𝜀, 𝛿 > 0. It is natural to see that for fixed 𝜀, the smaller 𝛿 is, the better the
algorithm is.

2.2 Concentration Inequalities

We start with Markov inequality.

Theorem 2 (Markov Inequality) For any non-negative random variable 𝑋
and 𝑎 > 0,

Pr [𝑋 ≥ 𝑎] ≤ E [𝑋]
𝑎

.

Proof. Since 𝑋 is non-negative, we have

E [𝑋] ≥ 𝑎 · Pr [𝑋 ≥ 𝑎] + 0 · Pr [𝑋 < 𝑎] .

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 6

This is equivalent to

Pr [𝑋 ≥ 𝑎] ≤ E [𝑋]
𝑎

.

□

Example 4 (Coupon Collector) There are 𝑛 types of coupons. Each time one
draws a coupon whose type is uniformly at random. How many times one
needs to draw to collect all 𝑛 types of coupons in expectation?

Let 𝑋 be the number of draws. For each 𝑖 = 0, 1, . . . , 𝑛 − 1, let 𝑋𝑖 be the
number of draws to get a new type of coupon while 𝑖 different types of coupons
are already in hand. All these numbers are random variable and clearly 𝑋 =∑𝑛−1

𝑖=0 𝑋𝑖 . Then by the linearity of the expectation

E [𝑋] = E

[
𝑛−1∑
𝑖=0

𝑋𝑖

]
=

𝑛−1∑
𝑖=0

E [𝑋𝑖] .

Note that 𝑋𝑖 ∼ Geom
(𝑛−𝑖

𝑛

)
and therefore E [𝑋𝑖] = 𝑛

𝑛−𝑖 . We have The geometric distribution is the prob-
ability distribution of the number 𝑋 of
Bernoulli trials needed to get one suc-
cess, supported on the set {1,2,3,. . . }. If the
Bernoulli trial successes with probability 𝑝 ,
then

Pr [𝑋 = 𝑘] = (1 − 𝑝)𝑘−1𝑝

E [𝑋] =
𝑛−1∑
𝑖=0

𝑛

𝑛 − 𝑖 = 𝑛

(
1 + 1

2
+ 1
3
+ · · · + 1

𝑛

)
= 𝑛𝐻𝑛,

where 𝐻𝑛 =
∑𝑛

𝑖=1
1
𝑖 → log𝑛 + 𝛾 when 𝑛 → ∞ with Euler constant

𝛾 = 0.577....
Therefore, by Markov inequality,

Pr [𝑋 ≥ 𝑐 · 𝑛𝐻𝑛] ≤
E [𝑋]
𝑐 · 𝑛𝐻𝑛

=
1
𝑐

for any 𝑐 > 0.

One way to obtain sharper concentration inequality is to apply the Markov
inequality to 𝑓 (|𝑋 − E [𝑥] |) for some 𝑓 increasing on ℝ≥0. This gives

Pr [𝑓 (|𝑋 − E [𝑋] |) ≥ 𝑓 (𝑎)] ≤ E [𝑓 (|𝑋 − E [𝑥] |)]
𝑓 (𝑎) .

If we take 𝑓 (𝑥) = 𝑥2, we obtain Chebyshev’s Inequality.

Theorem 3 (Chebyshev’s Inequality) For any random variable with
bounded E [𝑋] and 𝑎 ≥ 0, it holds that

Pr [|𝑋 − E [𝑋] | ≥ 𝑎] ≤ Var [𝑋]
𝑎2

Proof. Let 𝑌 = |𝑋 − E [𝑋] |, then clearly 𝑌 ≥ 0. Therefore

Pr [|𝑋 − E [𝑋] | ≥ 𝑎] = Pr [𝑌 ≥ 𝑎] = Pr
[
𝑌 2 ≥ 𝑎2

]
≤

E
[
𝑌 2]
𝑎2

=
E

[
(𝑋 − E [𝑋])2

]
𝑎2

=
Var [𝑋]

𝑎2
.

□
With these concentration inequalities, let us return to Morris’s algorithm.
First, we have to compute the variance of �̂�.

https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 7

Lemma 4

E
[(
2𝑋𝑚

)2]
=
3
2
𝑚2 + 3

2
𝑚 + 1

Proof. We can prove the claim using an induction argument similar to our
proof for the expectation. When𝑚 = 1, E

[(
2𝑋𝑚

)2]
= 4. We assume it is true

for smaller𝑚 and use the same notation 𝑋𝑖 . We have that

E[𝑚] = E
[
2𝑋𝑚

]
− 1

=
𝑚∑
𝑖=0

Pr [𝑋𝑚 = 𝑖] · 22𝑖

=
𝑚∑
𝑖=0

(
Pr [𝑋𝑚−1 = 𝑖]

(
−2−𝑖

)
+ Pr [𝑋𝑚−1 = 𝑖 − 1] · 21−𝑖

)
· 22𝑖

=
𝑚∑
𝑖=0

(
Pr [𝑋𝑚−1 = 𝑖]

(
22𝑖 − 2𝑖

)
+ Pr [𝑋𝑚−1 = 𝑖 − 1] · 2𝑖+1

)
=

𝑚−1∑
𝑖=0

Pr [𝑋𝑚−1 = 𝑖]
(
22𝑖 + 3 · 2𝑖

)
= E

[(
2𝑋𝑚−1

)2]
+ 3E

[
2𝑋𝑚−1

]
=
3
2
𝑚2 + 3

2
𝑚 + 1

□
With Lemma 4, we can compute the variance as follows,

Var [𝑚] = E
[
𝑚2] − E [

𝑚2] = E
[(
2𝑋𝑚 − 1

)2]
−𝑚2 ≤ 𝑚2

2
.

Applying Chebyshev’s inequality, we obtain that for every 𝜀 > 0,

Pr [|𝑚 −𝑚 | ≥ 𝜀𝑚] ≤ 1
2𝜀2

.

However, we observe that as 𝜀 becomes smaller, the above bound is not
useful. Thus, it is necessary to improve the concentration of the algorithm.
We now introduce to common tricks to achieve this.

2.3 The Averaging Trick

The Chebyshev’s inequality tells us that we can improve the concentration
by reducing the variance. Let’s first review some properties of variances.
Let 𝑋 be a random variable, we have

Var [𝑎 · 𝑋] = 𝑎2 · Var [𝑋] ,

for any constant 𝑎. For any two independent random variables 𝑋 and 𝑌 , we
have

Var [𝑋 + 𝑌] = Var [𝑋] + Var [𝑌] .

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 8

We can design a new algorithm by independently running Morris’s algo-
rithm 𝑡 time in parallel. Denote the corresponding outputs be𝑚1, · · · ,𝑚𝑡 .
The final output is

𝑚∗ :=
∑𝑡

𝑖=1𝑚𝑖

𝑡
.

By the above two properties, we have Var [𝑚∗] = Var[𝑚1]
𝑡 .

We can apply Chebyshev’s inequality to𝑚∗ and obtain that

Pr [|𝑚∗ −𝑚 | ≥ 𝜀𝑚] ≤ 1
𝑡 · 2𝜀2 .

For 𝑡 ≥ 1
2𝜀2𝛿 , we have

Pr [|𝑚∗ −𝑚 | ≥ 𝜀𝑚] ≤ 𝛿.

The new algorithm uses 𝑂
(
log log𝑛
𝜀2𝛿

)
bits of memory. It shows a trade-off

between the precision of the randomized algorithm and the consumption of
the memory space. We will further improve the bound using the Chernoff
bound below.

2.4 Chernoff Bound

Like Chebyshev’s inequality, if we choose 𝑓 (𝑥) = 𝑒𝛼𝑥 for 𝛼 > 0 and apply
Markov inequality on 𝑓 (𝑋), the bound amounts to bound E

[
𝑒𝛼𝑋

]
which is

the moment generating function of 𝑋 . In case E
[
𝑒𝛼𝑋

]
can be well bounded,

we obtain sharp concentration bounds.

Theorem 5 (Chernoff Bound) Let 𝑋1, . . . , 𝑋𝑛 be independent random vari-
ables such that 𝑋𝑖 ∼ Ber(𝑝𝑖) for each 𝑖 = 1, 2, . . . , 𝑛. Let 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 and

denote 𝜇 ≜ E [𝑋] = ∑𝑛
𝑖=1 𝑝𝑖 , we have

Pr [𝑋 ≥ (1 + 𝛿)𝜇] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
.

If 0 < 𝛿 < 1, then we have

Pr [𝑋 ≤ (1 − 𝛿)𝜇] ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝜇
.

Proof. We only prove the upper tail bound and the proof of lower tail
bound is similar. For every 𝛼 > 0, we have

Pr [𝑋 ≥ (1 + 𝛿)𝜇] = Pr
[
𝑒𝛼𝑋 ≥ 𝑒𝛼 (1+𝛿)𝜇

]
≤

E
[
𝑒𝛼𝑋

]
𝑒𝛼 (1+𝛿)𝜇

.

Therefore, we need to estimate the moment generating function E
[
𝑒𝛼𝑋

]
.

Since 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 is the sum of independent Bernoulli variables, we have

E
[
𝑒𝛼𝑋

]
= E

[
𝑒𝛼

∑𝑛
𝑖=1 𝑋𝑖

]
= E

[
𝑛∏
𝑖=1

𝑒𝛼𝑋𝑖

]
=

𝑛∏
𝑖=1

E
[
𝑒𝛼𝑋𝑖

]
.

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 9

Since 𝑋𝑖 ∼ Ber(𝑝𝑖), we can compute E
[
𝑒𝛼𝑋𝑖

]
directly:

E
[
𝑒𝛼𝑋𝑖

]
= 𝑝𝑖𝑒

𝛼 + (1 − 𝑝𝑖) = 1 + (𝑒𝛼 − 1)𝑝𝑖 ≤ exp ((𝑒𝛼 − 1)𝑝𝑖) .

Therefore,

E
[
𝑒𝛼𝑋

]
≤

𝑛∏
𝑖=1

exp ((𝑒𝛼 − 1)𝑝𝑖) = exp

{(
(𝑒𝛼 − 1)

𝑛∑
𝑖=1

𝑝𝑖

)}
= exp{((𝑒𝛼 − 1)𝜇)}.

Therefore,

Pr [𝑋 ≤ (1 + 𝛿)𝜇] ≤ E [𝑒𝛼𝑥]
𝑒𝛼 (1+𝛿)𝜇

≤
(
exp{(𝑒𝛼 − 1)}
exp{(𝛼 (1 + 𝛿))}

)𝜇
.

Note that above holds for any 𝛼 > 0. Therefore, we can choose 𝛼 so as to
minimize exp{(𝑒𝛼−1) }

exp{(𝛼 (1+𝛿)) } . To this end, we let(
exp{(𝑒𝛼 − 1)}
exp{(𝛼 (1 + 𝛿))}

) ′
= exp{(𝑒𝛼 − 1 − 𝛼 − 𝛼𝛿) · (𝑒𝛼 − 1 − 𝛿)} = 0.

This gives 𝛼 = log(1 + 𝛿). Therefore

Pr [𝑋 ≤ (1 + 𝛿)𝜇] ≤
(
exp{(𝑒𝛼 − 1)}
exp{(𝛼 (1 + 𝛿))}

)𝜇
=

(
𝑒𝛿

(1 + 𝛿) (1+𝛿)

)𝜇
.

□
The following form of Chernoff bound is more convenient to use (but
weaker):

Corollary 6 For any 0 < 𝛿 < 1,

Pr [𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp
{(
−𝛿

2

3
𝜇

)}
;

Pr [𝑋 ≤ (1 − 𝛿)𝜇] ≤ exp
{(
−𝛿

2

2
𝜇

)}
.

Proof. We only prove the upper tail. It suffices to verify that for 0 < 𝛿 < 1,
we have

𝑒𝛿

(1 + 𝛿) (1+𝛿)
≤ exp

{(
−𝛿

2

3

)}
.

Taking logarithm of both sides, this is equivalent to

𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ −𝛿
2

3
.

Let 𝑓 (𝛿) = 𝛿 − (1 + 𝛿) ln(1 + 𝛿) + 𝛿2

3 and note that

𝑓 ′(𝛿) = − ln(1 + 𝛿) + 2
3
𝛿, 𝑓 ′′(𝛿) = − 1

1 + 𝛿 +
2
3
.

Then for 0 < 𝛿 < 1/2, 𝑓 ′′(𝛿) < 0, and for 1/2 < 𝛿 < 1, 𝑓 ′′(𝛿) > 0. Therefore,
𝑓 ′(𝛿) first decreases and then increases in [0, 1]. Also note that 𝑓 ′(0) = 0,
𝑓 ′(1) < 0 and 𝑓 ′(𝛿) ≤ 0 when 0 ≤ 𝛿 ≤ 1. Therefore 𝑓 (𝛿) ≤ 𝑓 (0) = 0. □

[cs3958: lecture 1] introduction, morris’s algorithm, concentration 10

2.5 The Median Trick

We can further boost the performance of Morris’s algorithm using the
the median trick. We choose 𝑡 = 3

2𝜀2 in the algorithm introduced in the
averaging trick and independently run it 𝑠 time in parallel. Denote the
outputs as𝑚∗1,𝑚

∗
2, · · · ,𝑚∗𝑠 respectively. It holds that for every 𝑖 = 1, · · · , 𝑠 ,

Pr
[��𝑚∗𝑖 −𝑚�� ≥ 𝜀𝑚]

]
≤ 1

3
.

At last, we output the median𝑚∗∗ of𝑚∗1,𝑚
∗
2, · · · ,𝑚∗𝑠 .

Then we can apply the Chernoff bound to analyze the result obtained
by the median trick. For every 𝑖 = 1, · · · , 𝑠 , we let 𝑌𝑖 be the indicator of the
(good) event that ��𝑚∗𝑖 −𝑚�� < 𝜀 ·𝑚.

Then 𝑌 ≜
∑𝑠

𝑖=1 𝑌𝑖 satisfies E [𝑌] ≥ 2
3𝑠 . If the median𝑚∗∗ is bad (namely

|𝑚∗∗ −𝑚 | ≥ 𝜀 ·𝑚), then at least half of𝑚∗’s are bad. Equivalently, 𝑌 ≤ 1
2𝑠 .

By Chernoff bound,

Pr
[
|𝑌 − E [𝑌] | ≥ 1

6
𝑠

]
≤ 2 exp

(
− 𝑠

72

)
.

Therefore, for 𝑡 = 𝑂
(
1
𝜀2

)
and 𝑠 = 𝑂

(
log 1

𝛿

)
, we have

Pr [|𝑚∗∗ −𝑚 | ≥ 𝜀𝑚] ≤ 𝛿.

This new algorithm uses 𝑂 (1
𝜀2
· log 1

𝛿 · log log𝑛) bits of memory.

	Introduction to the Course
	Basic Probabilistic Tools
	Optimization
	Markov Chains and Sampling

	Concentration
	Streaming Model
	Concentration Inequalities
	The Averaging Trick
	Chernoff Bound
	The Median Trick

