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Design a probability space Ω

Show that Pr[the object exists] > 0

Bad events , each happens w.p. A1, A2, …, Am pi

Is ?Pr[Ā1 ∧ Ā2… ∧ Ām] > 0
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Āi = 1 − Pr ⋃
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Ai ≥ 1 − ∑
i∈[m]

pi

So  if Pr ⋂
i∈[m]

Āi > 0 ∑
i∈[m]

pi < 1

The union bound is tight when bad events are disjoint
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On the other hand, if the bad events are mutually 
independent…

Pr ⋂
i∈[m]

Āi = ∏
i∈[m]

(1 − pi)

So  as long as none of Pr ⋂
i∈[m]

Āi > 0 pi = 1

The two cases correspond to two extremes of the 
dependency
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Lovász Local Lemma
The Lovász local lemma (LLL) captures partial 
dependency between bad events

Erdős and Lovász, Infinite and Finite Sets, 1975
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We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3
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A4

N(Ai) = {Aj ∣ Ai ∼ Aj}
Δ = max

i∈[m]
|N(Ai) |

Ai ⊥ {Aj}j∉N(Ai)

Pr[Ai] ≤ p

4Δp ≤ 1
⟹ Pr ⋂

i∈[m]

Āi > 0



Proof of (Symmetric) LLL
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For , we prove by induction on  thatS ⊆ [m] |S |

∀i ∉ S, Pr Ai ∣ ⋂
j∈S

Āj ≤ 2p

Assume  and the statement holds for 
smaller 

|S | = s
S

For every , we use  to denote the event T ⊆ [m] FT

⋂
i∈T

Āi
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It is clear that for every ,  T ∈ ( [m]
≤ s)

Pr[FT] ≥ (1 − 2p)s > 0

We partition  into  where S S = S1 ∪ S2 S1 = {j ∣ j ∼ i}

If , then |S2 | = s Pr[Ai ∣ S] = Pr[Ai ∣ S2] ≤ p

Otherwise, 
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⟹ Pr[Ai ∣ FS] ≤ 2p



Applications of LLL
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Edge-Disjoint Paths
 pairs of users, each has a collection of  paths  

connecting them
n m Fi

Each path in  shares edges with no more 
than  paths in  for any 

Fi
k Fj j ≠ i

If , then there is a way to choose 
 edge-disjoint paths connecting  pairs
8nk ≤ m

n n
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Define the probability space as

“Each pair of users chooses a path from its 
collection uniformly at random”

For every , define the bad event  as i ≠ j Eij

“the path chosen in  overlaps with the path 
chosen in ”

Fi
Fj

So we only need to show Pr ⋂
{i,j}∈(n

2)
Ēij > 0
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For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

 and  are dependent only when Eij Ei′ j′ 

{i, j} ∩ {i′ , j′ } ≠ ∅

So the maximum degree of the dependency graph 
is at most 2n

The LLL condition is then 8nk ≤ m
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Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

On the other hand, if the formula is sparse, then it 
is always satisfiable

Given , where each ϕ = C1 ∧ C2… ∧ Cm |Ci | = k

The degree of a variable  is the number of clauses  
that  or  belongs to. 

x
x x̄

Let  be the maximum degree of variables in d ϕ
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Theorem.  

If , then  is satisfiable4kd ≤ 2k ϕ

The probability space is the uniform distribution 
over {0,1}V

Each clause  defines a bad event “  is not 
satisfied”

Ci Ai := Ci

We need to show Pr ⋂
i∈[m]

Āi > 0
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Two clauses are dependent only if they share some 
variables

Therefore, the maximum degree of the dependency 
graph is at most kd

The LLL condition is 4kd ≤ 2k

Each clause  satisfies Ci Pr[Āi] = 2−k
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Asymmetric LLL
In many cases, bad events happen with different 
probabilities

Assume there exist  such thatx1, …, xn ∈ [0,1]

Pr[Ai] ≤ xi∏
j∼i

(1 − xj)

Then Pr [
n

⋂
i=1

Āi] ≥
n

∏
i=1

(1 − xi)
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