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Design a probability space £2
Show that Pr[the object exists] > 0

Bad events A, A,, ..., A, each happens w.p. p;

IsPrlA, AA,... ANA 1> 0?
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We can apply the union bound

Pr ﬂAi =1—Pr UAZ- ZI—Zpi

1€|m] 1€m] 1€|m]

SoPr| (VA >0if ) p <1

i€[m] 1€[m]

The union bound is tight when bad events are disjoint
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On the other hand, if the bad events are mutually
independent...

Pl (V4| =]]a-m

1E[m] 1€|m]

So Pr ﬂ A.| > 0 as long as none of p; = 1

1€|mj

The two cases correspond to two extremes of the
dependency
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L.ovasz L.ocal Lemma

The Lovasz local lemma (LLL) captures partial
dependency between bad events

Erdos and Lovasz, Infinite and Finite Sets, 1975
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We describe the dependency of bad events in a graph

V: {Al’ ...,An}
N(A;)) = {Aj | A; ~ Aj}
(%) A = max |N(A)) |
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Proof of (Symmetric) LLL
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For S C [m], we prove by induction on |S| that
VigS, Pr|A ()4 <2p

jes

Assume |S| = s and the statement holds for
smaller S

For every 1" C [m], we use F to denote the event
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. [m]
It is clear that for every I & <. )
<s

Pr(F;] > (1 —-2p)° >0
We partition S into § = S, U $, where §;, = {j | j ~ 1}

If |S,| = s, then Pr[A, | S] = Pr[A, | S,] < p

Otherwise,

Pr{A; N Fg N Fy )
Pr{A; | F] = PrlA; | Fs N Fg] =

Pr[Fs N F]
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Pr{A; N F | Fg] < Pr[A; | Fg] <p

1
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= Pr[A; | F5] <2p



Applications of LLL
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Edge-Disjoint Paths

n pairs of users, each has a collection of m paths F;
connecting them

Fach path in F; shares edges with no more
than £ paths in F; for any j # 1

i If 3nk < m, then there is a way to choose
| n edge-disjoint paths connecting n pairs |
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Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every i # J, define the bad event £;; as

“the path chosen in F; overlaps with the path
chosen in F;”

So we only need to show Pr ﬂ E.| >0
(ijle()
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n k
For each {i,]} € ( ), we have Pr[£;] < —
2 m

L; and L;; are dependent only when
Ly n{ij} # @

So the maximum degree of the dependency graph

is at most 2n
4Ap < 1

o A L Ailjgna)
The LLL condition is then 8nk < m PrA] < p

——
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Satisfiability

Recall that k-SAT problem is NP-hard for k > 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given ¢ = C; A C,... AC,, where each |C;| =k

The degree of a variable x is the number of clauses
that x or X belongs to.

Let d be the maximum degree of variables in ¢
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Theorem.
If 4kd < 2%, then ¢ is satisfiable

The probability space is the uniform distribution

over {0,1}"

Each clause C; defines a bad event A; := “C; is not
satisfied”

We need to show Pr ﬂ Al >0

1€|m]
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Each clause C; satisfies Pr[A,] = 27*

Two clauses are dependent only if they share some
variables

Therefore, the maximum degree of the dependency
graph is at most kd

The LLL condition is 4kd < 2*
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Asymmetric LLL

In many cases, bad events happen with different
probabilities

Assume there exist xq, ..., x, € [0,1] such that

PriA] < x| [ (1 -x)

ji

n

Then Pr |:ﬂ141:| Z
=1 l

(I —x)
1
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LLL guarantees the existence of a solution

Can we find one efficiently?

The Godel Prize 2020 - Laudation

The 2020 Godel Prize is awarded to Robin A. Moser and Gabor Tardos for their algorithmic version of the Lovasz
Local Lemma in the paper:

“A constructive proof of the general Lovasz Local Lemma," Journal of the ACM 57(2): 11:1-11:15 (2010).

The Lovasz Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the

existence of certain objects even though they occur with exponentially small probability. The original proof was not

algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple,
SRR . I - e - e i



