Advanced Algorithms (VIII)

Shanghai Jiao Tong University

Chihao Zhang

April 26, 2020

The Probabilistic Method

The Probabilistic Method

Design a probability space £2

The Probabilistic Method

Design a probability space £2

Show that Pr[the object exists] > 0

The Probabilistic Method

Design a probability space £2
Show that Pr[the object exists] > 0

Bad events A, A,, ..., A, each happens w.p. p;

The Probabilistic Method

Design a probability space £2
Show that Pr[the object exists] > 0

Bad events A, A,, ..., A, each happens w.p. p;

IsPrlA, AA,... ANA 1> 0?

We can apply the union bound

We can apply the union bound

Pr ﬂAi =1—Pr UAZ- ZI—Zpi

1€[m] i€[m] i€[m]

We can apply the union bound

Pr ﬂAi =1—Pr UAZ- ZI—Zpi

1€[m] i€[m] i€[m]

SoPr| (VA >0if) p<1

1€[m] 1€[m]

We can apply the union bound

Pr ﬂAi =1—Pr UAZ- ZI—Zpi

1€|m] 1€m] 1€|m]

SoPr| (VA >0if) p <1

i€[m] 1€[m]

The union bound is tight when bad events are disjoint

On the other hand, if the bad events are mutually
independent...

On the other hand, if the bad events are mutually
independent...

Pl (V4| =]]a-m

1E[m] 1€|m]

On the other hand, if the bad events are mutually
independent...

Pr[ﬂA,-] =[[a-m

1E[m] 1€|m]

So Pr ﬂ A.| > 0 as long as none of p; = 1

1€|mj

On the other hand, if the bad events are mutually
independent...

Pl (V4| =]]a-m

1E[m] 1€|m]

So Pr ﬂ A.| > 0 as long as none of p; = 1

1€|mj

The two cases correspond to two extremes of the
dependency

L.ovasz L.ocal Lemma

L.ovasz L.ocal Lemma

The Lovasz local lemma (LLL) captures partial
dependency between bad events

L.ovasz L.ocal Lemma

The Lovasz local lemma (LLL) captures partial
dependency between bad events

Erdos and Lovasz, Infinite and Finite Sets, 1975

The Dependency Graph

The Dependency Graph

We describe the dependency of bad events in a graph

The Dependency Graph

We describe the dependency of bad events in a graph

The Dependency Graph

We describe the dependency of bad events in a graph

@ @ V: {Al’“"An}

The Dependency Graph

We describe the dependency of bad events in a graph

V: {Al’ ...,An}

(%)
% N(A)) = {Aj | A ~ Aj}

The Dependency Graph

We describe the dependency of bad events in a graph

G V={A,...,A)
0 N(A)) = {Aj | A ~ Aj}

(%) A = max |N(A)) |

1€|m]

The Dependency Graph

We describe the dependency of bad events in a graph

V: {Al’ ...,An}
N(A;)) = {Aj | A; ~ Aj}
(%) A = max |N(A)) |

1€|m]

The Dependency Graph

We describe the dependency of bad events in a graph

V: {Al’ ...,An}
N(A;)) = {Aj | A; ~ Aj}
(%) A = max |N(A)) |

1€|m]

The Dependency Graph

We describe the dependency of bad events in a graph

V: {Al’ ...,An}
N(A;)) = {Aj | A; ~ Aj}
(%) A = max |N(A)) |

1€|m]

Proof of (Symmetric) LLL

For S C [m], we prove by induction on |S| that

For S C [m], we prove by induction on |S| that

VigS, Pr|A ()4 <2p
ieS

For S C [m], we prove by induction on |S| that

VigS, Pr|A ()4 <2p
ieS

Assume |S| = s and the statement holds for
smaller S

For S C [m], we prove by induction on |S| that
VigS, Pr|A ()4 <2p

jes

Assume |S| = s and the statement holds for
smaller S

For every 1" C [m], we use F to denote the event

14

el

. [m]
It is clear that for every I & <.)
<s

Pr[F,] > (1 =2p)* >0

. [m]
It is clear that for every I & <.)
<s

Pr[F,] > (1 =2p)* >0

We partition S into § = S, U $, where §;, = {j | j ~ 1}

. [m]
It is clear that for every I & <.)
<s

Pr(F;] > (1 —-2p)° >0
We partition S into § = S, U $, where §;, = {j | j ~ 1}

If |S,| = s, then Pr[A, | S] = Pr[A, | S,] < p

. [m]
It is clear that for every I & <.)
<s

Pr(F;] > (1 —-2p)° >0
We partition S into § = S, U $, where §;, = {j | j ~ 1}

If |S,| = s, then Pr[A, | S] = Pr[A, | S,] < p

Otherwise,

Pr{A; N Fg N Fy)
Pr{A; | F] = PrlA; | Fs N Fg] =

Pr[Fs N F]

Pr[Fg N Fy] PriFy, | Fg,]

PrlA;NnF¢ NFg] PrlAnNFs | Fql
PHA, | Fy] = S, Sl Sl‘ S

Pr[Fg N Fy] PriFy, | Fg,]

Pr{A; N F | Fg] < Pr[A; | Fg] <p

PriANnF¢ NFg] PrlAnFg | Fq]
Pr[A, | Fy] = Si” "8 _ A YL

Pr[Fg N Fy] PriFy, | Fg,]

Pr{A; N F | Fg] < Pr[A; | Fg] <p

1
Pr{Fg | Fg]=1-Pr JgAj | Fs,| 21 = 2dp >
1

PriANnF¢ NFg] PrlAnFg | Fq]
Pr[A, | Fy] = Si” "8 _ A YL

Pr[Fg N Fy] PriFy, | Fg,]

Pr{A; N F | Fg] < Pr[A; | Fg] <p

1
Pr{Fg | Fg]=1-Pr JgAj | Fs,| 21 = 2dp >
1

PriANnF¢ NFg] PrlAnFg | Fq]
Pr[A, | Fy] = Si” "8 _ A YL

Pr[Fg N Fy] PriFy, | Fg,]

Pr{A; N F | Fg] < Pr[A; | Fg] <p

1
Pr{Fg | Fg]=1-Pr JgAj | Fs,| 21 = 2dp >
1

PriANnF¢ NFg] PrlAnFg | Fq]
Pr[A, | Fy] = Si” "8 _ A YL

Pr[Fg N Fy] PriFy, | Fg,]

Pr{A; N F | Fg] < Pr[A; | Fg] <p

1
Pr{Fs, | Fgl=1-Pr || JA/ | Fg | >1-2dp>—

| 2
JES,

= Pr[A; | F5] <2p

Applications of LLL

Edge-Disjoint Paths

Edge-Disjoint Paths

n pairs of users, each has a collection of m paths F;
connecting them

Edge-Disjoint Paths

n pairs of users, each has a collection of m paths F;
connecting them

Fach path in F; shares edges with no more
than £ paths in F; for any j # 1

Edge-Disjoint Paths

n pairs of users, each has a collection of m paths F;
connecting them

Fach path in F; shares edges with no more
than £ paths in F; for any j # 1

i If 3nk < m, then there is a way to choose
| n edge-disjoint paths connecting n pairs |

Define the probability space as

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every i # J, define the bad event £;; as

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every i # J, define the bad event £;; as

“the path chosen in F; overlaps with the path
chosen in F;”

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every i # J, define the bad event £;; as

“the path chosen in F; overlaps with the path
chosen in F;”

So we only need to show Pr ﬂ E.| >0
(ijle()

n k
For each {i,]} € (), we have Pr[£;] < —
2 m

n k
For each {i,]} € (), we have Pr[£;] < —
2 m

L; and L;; are dependent only when
Ly n{ij} # @

n k
For each {i,]} € (), we have Pr[£;] < —
2 m

L; and L;; are dependent only when
Ly n{ij} # @

So the maximum degree of the dependency graph
is at most 2n

n k
For each {i,]} € (), we have Pr[£;] < —
2 m

L; and L;; are dependent only when
Ly n{ij} # @

So the maximum degree of the dependency graph

is at most 2n
4Ap < 1
A; L 14} jenvay
PrlA]] <p

n k
For each {i,]} € (), we have Pr[£;] < —
2 m

L; and L;; are dependent only when
Ly n{ij} # @

So the maximum degree of the dependency graph

is at most 2n
4Ap < 1

o A L Ailjgna)
The LLL condition is then 8nk < m PrA] < p

——

Satisfiability

Satisfiability

Recall that k-SAT problem is NP-hard for k£ > 3

Satisfiability

Recall that k-SAT problem is NP-hard for k > 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Satisfiability

Recall that k-SAT problem is NP-hard for k > 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given ¢ = C; A C,... AC,, where each |C;| =k

Satisfiability

Recall that k-SAT problem is NP-hard for k > 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given ¢ = C; A C,... AC,, where each |C;| =k

The degree of a variable x is the number of clauses
that x or X belongs to.

Satisfiability

Recall that k-SAT problem is NP-hard for k > 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given ¢ = C; A C,... AC,, where each |C;| =k

The degree of a variable x is the number of clauses
that x or X belongs to.

Let d be the maximum degree of variables in ¢

Theorem.
If 4kd < 2%, then ¢ is satisfiable

Theorem.
If 4kd < 2%, then ¢ is satisfiable

The probability space is the uniform distribution

over {0,1}"

Theorem.

If 4kd < 2%, then ¢ is satisfiable

The probability space is the uniform distribution

over {0,1}"

Each clause C; defines a bad event A; := “C; is not
satisfied”

Theorem.
If 4kd < 2%, then ¢ is satisfiable

The probability space is the uniform distribution

over {0,1}"

Each clause C; defines a bad event A; := “C; is not
satisfied”

We need to show Pr ﬂ Al >0

1€|m]

Each clause C; satisfies Pr[A,] = 27*

Each clause C; satisfies Pr[A,] = 27*

Two clauses are dependent only if they share some
variables

Each clause C; satisfies Pr[A,] = 27*

Two clauses are dependent only if they share some
variables

Therefore, the maximum degree of the dependency
graph is at most kd

Each clause C; satisfies Pr[A,] = 27*

Two clauses are dependent only if they share some
variables

Therefore, the maximum degree of the dependency
graph is at most kd

The LLL condition is 4kd < 2*

Asymmetric LLL

Asymmetric LLL

In many cases, bad events happen with different
probabilities

Asymmetric LLL

In many cases, bad events happen with different
probabilities

Assume there exist xq, ..., x, € [0,1] such that

PriA] < x| [(1 -x)

ji

Asymmetric LLL

In many cases, bad events happen with different
probabilities

Assume there exist xq, ..., x, € [0,1] such that

PriA] < x| [(1 -x)

ji

n

Then Pr |:ﬂ141:| Z
=1 l

(I —x)
1

Algorithmic LLL

Algorithmic LLL

LLL guarantees the existence of a solution

Algorithmic LLL

LLL guarantees the existence of a solution

Can we find one efficiently?

Algorithmic LLL

LLL guarantees the existence of a solution

Can we find one efficiently?

The Godel Prize 2020 - Laudation

The 2020 Godel Prize is awarded to Robin A. Moser and Gabor Tardos for their algorithmic version of the Lovasz
Local Lemma in the paper:

“A constructive proof of the general Lovasz Local Lemma," Journal of the ACM 57(2): 11:1-11:15 (2010).

The Lovasz Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the

existence of certain objects even though they occur with exponentially small probability. The original proof was not

algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple,
SRR . I - e - e i

