
Advanced Algorithms (VIII)

Shanghai Jiao Tong University

Chihao Zhang

April 26, 2020

The Probabilistic Method

The Probabilistic Method

Design a probability space Ω

The Probabilistic Method

Design a probability space Ω

Show that Pr[the object exists] > 0

The Probabilistic Method

Design a probability space Ω

Show that Pr[the object exists] > 0

Bad events , each happens w.p. A1, A2, …, Am pi

The Probabilistic Method

Design a probability space Ω

Show that Pr[the object exists] > 0

Bad events , each happens w.p. A1, A2, …, Am pi

Is ?Pr[Ā1 ∧ Ā2… ∧ Ām] > 0

We can apply the union bound

We can apply the union bound

Pr ⋂
i∈[m]

Āi = 1 − Pr ⋃
i∈[m]

Ai ≥ 1 − ∑
i∈[m]

pi

We can apply the union bound

Pr ⋂
i∈[m]

Āi = 1 − Pr ⋃
i∈[m]

Ai ≥ 1 − ∑
i∈[m]

pi

So if Pr ⋂
i∈[m]

Āi > 0 ∑
i∈[m]

pi < 1

We can apply the union bound

Pr ⋂
i∈[m]

Āi = 1 − Pr ⋃
i∈[m]

Ai ≥ 1 − ∑
i∈[m]

pi

So if Pr ⋂
i∈[m]

Āi > 0 ∑
i∈[m]

pi < 1

The union bound is tight when bad events are disjoint

On the other hand, if the bad events are mutually
independent…

On the other hand, if the bad events are mutually
independent…

Pr ⋂
i∈[m]

Āi = ∏
i∈[m]

(1 − pi)

On the other hand, if the bad events are mutually
independent…

Pr ⋂
i∈[m]

Āi = ∏
i∈[m]

(1 − pi)

So as long as none of Pr ⋂
i∈[m]

Āi > 0 pi = 1

On the other hand, if the bad events are mutually
independent…

Pr ⋂
i∈[m]

Āi = ∏
i∈[m]

(1 − pi)

So as long as none of Pr ⋂
i∈[m]

Āi > 0 pi = 1

The two cases correspond to two extremes of the
dependency

Lovász Local Lemma

Lovász Local Lemma
The Lovász local lemma (LLL) captures partial
dependency between bad events

Lovász Local Lemma
The Lovász local lemma (LLL) captures partial
dependency between bad events

Erdős and Lovász, Infinite and Finite Sets, 1975

The Dependency Graph

The Dependency Graph
We describe the dependency of bad events in a graph

The Dependency Graph
We describe the dependency of bad events in a graph

A1

A3

A2

A4

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

N(Ai) = {Aj ∣ Ai ∼ Aj}

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

N(Ai) = {Aj ∣ Ai ∼ Aj}
Δ = max

i∈[m]
|N(Ai) |

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

N(Ai) = {Aj ∣ Ai ∼ Aj}
Δ = max

i∈[m]
|N(Ai) |

Ai ⊥ {Aj}j∉N(Ai)

Pr[Ai] ≤ p

4Δp ≤ 1

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

N(Ai) = {Aj ∣ Ai ∼ Aj}
Δ = max

i∈[m]
|N(Ai) |

Ai ⊥ {Aj}j∉N(Ai)

Pr[Ai] ≤ p

4Δp ≤ 1
⟹

The Dependency Graph
We describe the dependency of bad events in a graph

V = {A1, …, An}
A1

A3

A2

A4

N(Ai) = {Aj ∣ Ai ∼ Aj}
Δ = max

i∈[m]
|N(Ai) |

Ai ⊥ {Aj}j∉N(Ai)

Pr[Ai] ≤ p

4Δp ≤ 1
⟹ Pr ⋂

i∈[m]

Āi > 0

Proof of (Symmetric) LLL

For , we prove by induction on thatS ⊆ [m] |S |

For , we prove by induction on thatS ⊆ [m] |S |

∀i ∉ S, Pr Ai ∣ ⋂
j∈S

Āj ≤ 2p

For , we prove by induction on thatS ⊆ [m] |S |

∀i ∉ S, Pr Ai ∣ ⋂
j∈S

Āj ≤ 2p

Assume and the statement holds for
smaller

|S | = s
S

For , we prove by induction on thatS ⊆ [m] |S |

∀i ∉ S, Pr Ai ∣ ⋂
j∈S

Āj ≤ 2p

Assume and the statement holds for
smaller

|S | = s
S

For every , we use to denote the event T ⊆ [m] FT

⋂
i∈T

Āi

It is clear that for every , T ∈ ([m]
≤ s)

Pr[FT] ≥ (1 − 2p)s > 0

It is clear that for every , T ∈ ([m]
≤ s)

Pr[FT] ≥ (1 − 2p)s > 0

We partition into where S S = S1 ∪ S2 S1 = {j ∣ j ∼ i}

It is clear that for every , T ∈ ([m]
≤ s)

Pr[FT] ≥ (1 − 2p)s > 0

We partition into where S S = S1 ∪ S2 S1 = {j ∣ j ∼ i}

If , then |S2 | = s Pr[Ai ∣ S] = Pr[Ai ∣ S2] ≤ p

It is clear that for every , T ∈ ([m]
≤ s)

Pr[FT] ≥ (1 − 2p)s > 0

We partition into where S S = S1 ∪ S2 S1 = {j ∣ j ∼ i}

If , then |S2 | = s Pr[Ai ∣ S] = Pr[Ai ∣ S2] ≤ p

Otherwise,

Pr[Ai ∣ FS] = Pr[Ai ∣ FS1
∩ FS2

] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[Ai ∩ FS1
∣ FS2

] ≤ Pr[Ai ∣ FS2
] ≤ p

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[FS1
∣ FS2

] = 1 − Pr ⋃
j∈S1

Aj ∣ FS2
≥ 1 − 2dp ≥

1
2

Pr[Ai ∩ FS1
∣ FS2

] ≤ Pr[Ai ∣ FS2
] ≤ p

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[FS1
∣ FS2

] = 1 − Pr ⋃
j∈S1

Aj ∣ FS2
≥ 1 − 2dp ≥

1
2

Pr[Ai ∩ FS1
∣ FS2

] ≤ Pr[Ai ∣ FS2
] ≤ p }

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[FS1
∣ FS2

] = 1 − Pr ⋃
j∈S1

Aj ∣ FS2
≥ 1 − 2dp ≥

1
2

Pr[Ai ∩ FS1
∣ FS2

] ≤ Pr[Ai ∣ FS2
] ≤ p }

⟹

Pr[Ai ∣ FS] =
Pr[Ai ∩ FS1

∩ FS2
]

Pr[FS1
∩ FS2

]
=

Pr[Ai ∩ FS1
∣ FS2

]
Pr[FS1

∣ FS2
]

Pr[FS1
∣ FS2

] = 1 − Pr ⋃
j∈S1

Aj ∣ FS2
≥ 1 − 2dp ≥

1
2

Pr[Ai ∩ FS1
∣ FS2

] ≤ Pr[Ai ∣ FS2
] ≤ p }

⟹ Pr[Ai ∣ FS] ≤ 2p

Applications of LLL

Edge-Disjoint Paths

Edge-Disjoint Paths
 pairs of users, each has a collection of paths

connecting them
n m Fi

Edge-Disjoint Paths
 pairs of users, each has a collection of paths

connecting them
n m Fi

Each path in shares edges with no more
than paths in for any

Fi
k Fj j ≠ i

Edge-Disjoint Paths
 pairs of users, each has a collection of paths

connecting them
n m Fi

Each path in shares edges with no more
than paths in for any

Fi
k Fj j ≠ i

If , then there is a way to choose
 edge-disjoint paths connecting pairs
8nk ≤ m

n n

Define the probability space as

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every , define the bad event as i ≠ j Eij

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every , define the bad event as i ≠ j Eij

“the path chosen in overlaps with the path
chosen in ”

Fi
Fj

Define the probability space as

“Each pair of users chooses a path from its
collection uniformly at random”

For every , define the bad event as i ≠ j Eij

“the path chosen in overlaps with the path
chosen in ”

Fi
Fj

So we only need to show Pr ⋂
{i,j}∈(n

2)
Ēij > 0

For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

 and are dependent only when Eij Ei′ j′

{i, j} ∩ {i′ , j′ } ≠ ∅

For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

 and are dependent only when Eij Ei′ j′

{i, j} ∩ {i′ , j′ } ≠ ∅

So the maximum degree of the dependency graph
is at most 2n

For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

 and are dependent only when Eij Ei′ j′

{i, j} ∩ {i′ , j′ } ≠ ∅

So the maximum degree of the dependency graph
is at most 2n

For each , we have {i, j} ∈ (n
2) Pr[Eij] ≤

k
m

 and are dependent only when Eij Ei′ j′

{i, j} ∩ {i′ , j′ } ≠ ∅

So the maximum degree of the dependency graph
is at most 2n

The LLL condition is then 8nk ≤ m

Satisfiability

Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given , where each ϕ = C1 ∧ C2… ∧ Cm |Ci | = k

Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given , where each ϕ = C1 ∧ C2… ∧ Cm |Ci | = k

The degree of a variable is the number of clauses
that or belongs to.

x
x x̄

Satisfiability
Recall that -SAT problem is -hard for k NP k ≥ 3

On the other hand, if the formula is sparse, then it
is always satisfiable

Given , where each ϕ = C1 ∧ C2… ∧ Cm |Ci | = k

The degree of a variable is the number of clauses
that or belongs to.

x
x x̄

Let be the maximum degree of variables in d ϕ

Theorem.

If , then is satisfiable4kd ≤ 2k ϕ

Theorem.

If , then is satisfiable4kd ≤ 2k ϕ

The probability space is the uniform distribution
over {0,1}V

Theorem.

If , then is satisfiable4kd ≤ 2k ϕ

The probability space is the uniform distribution
over {0,1}V

Each clause defines a bad event “ is not
satisfied”

Ci Ai := Ci

Theorem.

If , then is satisfiable4kd ≤ 2k ϕ

The probability space is the uniform distribution
over {0,1}V

Each clause defines a bad event “ is not
satisfied”

Ci Ai := Ci

We need to show Pr ⋂
i∈[m]

Āi > 0

Each clause satisfies Ci Pr[Āi] = 2−k

Two clauses are dependent only if they share some
variables

Each clause satisfies Ci Pr[Āi] = 2−k

Two clauses are dependent only if they share some
variables

Therefore, the maximum degree of the dependency
graph is at most kd

Each clause satisfies Ci Pr[Āi] = 2−k

Two clauses are dependent only if they share some
variables

Therefore, the maximum degree of the dependency
graph is at most kd

The LLL condition is 4kd ≤ 2k

Each clause satisfies Ci Pr[Āi] = 2−k

Asymmetric LLL

Asymmetric LLL
In many cases, bad events happen with different
probabilities

Asymmetric LLL
In many cases, bad events happen with different
probabilities

Assume there exist such thatx1, …, xn ∈ [0,1]

Pr[Ai] ≤ xi∏
j∼i

(1 − xj)

Asymmetric LLL
In many cases, bad events happen with different
probabilities

Assume there exist such thatx1, …, xn ∈ [0,1]

Pr[Ai] ≤ xi∏
j∼i

(1 − xj)

Then Pr [
n

⋂
i=1

Āi] ≥
n

∏
i=1

(1 − xi)

Algorithmic LLL

Algorithmic LLL
LLL guarantees the existence of a solution

Algorithmic LLL
LLL guarantees the existence of a solution

Can we find one efficiently?

Algorithmic LLL
LLL guarantees the existence of a solution

Can we find one efficiently?

