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The Probabilistic Method

In the class of Combinatorics, you already learnt the 
probabilistic method

This is an important technique to prove the existence 
of some object.

Sometimes, it is also useful to “find the object”



Max Cut

Given an undirected graph , the max cut 
of  is the partition  such that  
is maximized

G = (V, E)
G V = S ∪ S̄ |E(S, S̄) |

edge between  and S S̄

It is NP-hard to determine the max cut exactly 

On the other hand, each graph contains a cut of size at 

least 
|E |
2



We find a partition  by tossing a fair coin at 
each vertex 

(S, S̄)
v

If the coin gives HEAD, we put  in  otherwise, 
put  in 

v S,
v S̄

We can compute

E[ |E(S, S̄) | ] = ∑
e∈E

Pr[e is in the cut] =
|E |
2

.

So there exists a cut of size at least 
|E |
2



Can we turn the existence proof into an algorithm?

The following straightforward strategy turns the 
argument into a Las-Vegas algorithms

“Repeat tossing coins until ”|E(S, S̄) | ≥
|E |
2

We know , so what is the 

expected running time of the algorithm?

E[ |E(S, S̄) | ] =
|E |
2



Let  be the probability that our algorithm terminates  
in one round

p

Namely  where .  

Then

p = Pr [ |E(S, S̄) | ≥
m
2 ] m = |E |

m
2

= E[ |E(S, S̄) | ] =
m

∑
i=0

i ⋅ Pr[ |E(S, S̄) | = i]

≤ ( m
2

− 1)(1 − p) + pm

So p ≥
2

m + 2



So we obtained a polynomial-time randomized 

approximation algorithm with approximation ratio 
1
2

Approximation Ratio of an algorithm A

for maximization problem:

α(A) = min
G

A(G)
OPT(G)

for minimization problem:

α(A) = max
G

A(G)
OPT(G)



Derandomization
Our algorithm can be de-randomized using the 
method of conditional expectation

Fix an order of vertices {v1, v2, …, vn}

Let the coins be X1, X2, …, Xn

We will decompose  using conditional 
expectation

E[ |E(S, S̄) | ]



E[ |E(S, S̄) | ] = E[E[ |E(S, S̄) | |X1, X2, …, Xn]]

=
1
2

⋅ E[E[ |E(S, S̄) | ∣ X1 = 0, X2, …, Xn]]

+
1
2

⋅ E[E[ |E(S, S̄) | ∣ X1 = 1, X2, …, Xn]]

=
1
2

⋅ E[ |E(S, S̄) | ∣ X1 = 0]] +
1
2

⋅ E[ |E(S, S̄) | ∣ X1 = 1]]

E0

| |

E1

| |

So we know at least one of  and  holds E0 ≥
m
2

E1 ≥
m
2

Moreover, both  and  can be efficiently computedE0 E1



We can set  or  according to which of  
and  is bigger

X1 = 0 X1 = 1 E0
E1

The argument can proceed until  is revealed, 
deterministically! 

(S, S̄)

In fact, the “derandomized algorithm” is equivalent 
to a simple greedy strategy

We obtained the approximation ratio of the greedy 
algorithm as a byproduct



Max SAT
The simple “Tossing Coins” strategy can also be 
applied to the MAXimum SATisfiability problem.

MaxSAT 

Input: A CNF formula  

Problem: Compute an assignment that        
satisfies maximum number of clauses

ϕ = C1 ∧ C2⋯ ∧ Cm

Formula , variables , ϕ V = {x1, …, xn} |Ci | = ℓi ≥ 1



Let us analyze the “tossing fair coins” algorithm

Let  be the number of satisfied clausesX

E[X] =
m

∑
i=1

Pr[Ci is satisfied] =
m

∑
i=1

(1 − 2−ℓi) ≥
m
2

Recall 

To bound the approximation ratio, we need an upper 
bound for OPT(ϕ)



A trivial upper bound is OPT(ϕ) ≤ m

So the approximation ratio is 0.5

Can we improve it?

In the analysis we use ℓi ≥ 1

In fact, we can tweak those singleton clauses



If for some , only one of  and  is in x ∈ V x x̄ ϕ

• we can toss an unfair coin to increase its 
chance to be satisfied

If both  and  are in , x x̄ ϕ

• only one of them can be satisfied in any 
assignment!

Both cases are good for us!



Assume there are more positive singletons than 
negative singletons in ϕ

Let  
and 

S = {x ∈ V : both x and x̄ are clauses}
t = |S |

Then OPT(ϕ) ≤ m − t

Let  be the set of clauses and 𝒞
𝒞′ = 𝒞∖{singleton x and x̄ with x ∈ S}

For all , change it to x̄ ∈ 𝒞′ x Switch the positive and the 
negative for all appearance of x



E[X] = t + ∑
C∈𝒞′ 

Pr[C is satisfied] ≥ t + (m − 2t) min{p,1 − p2}

The term  is because the worst 
case now is either a positive singleton  or 

min{p,1 − p2}
x ȳ ∨ z̄

Therefore

E[X] ≥ t + (OPT − t) min{p,1 − p2} ≥ min{p,1 − p2} ⋅ OPT

For , we have a -approximation 
algorithm

p = 1 − p2 0.618



Non-identical Coins via LP

The drawback of previous algorithms is that we toss 
the same coin for each variable

The linear programming can helps us to choose coins!

We first treat MaxSAT problem as an integer 
programming



 - for each clause zj Cj

 - for each variable yi xi

The Integer Program

It is NP-hard to solve the IP



The Linear Program

OPT(ϕ) ≤ OPT(LP) =
m

∑
j=1

z*j

 - the optimal 
solution of the LP
z* = {z*j }j∈[m], y* = {y*i }i∈[n]

We toss -coin for the variable !y*i xi



Pr[Cj is not satisfied] = ∏
i∈Pj

(1 − y*i ) ∏
k∈Nj

y*k

≤
1
ℓj ∑

i∈Pj

(1 − y*i ) + ∑
k∈Nj

y*k

ℓj

=
1
ℓj

ℓj − ∑
i∈Pj

y*i + ∑
k∈Nj

(1 − y*k )

ℓj

≤ (1 −
z*j
ℓj )

ℓj

.

AM-GM



E[X] =
m

∑
j=1

Pr[Cj is satisfied]

≥
m

∑
j=1

1 − (1 −
z*j
ℓj )

ℓj

≥
m

∑
j=1

1 − (1 −
1
ℓj )

ℓj

z*j

≥ (1 − e−1)
m

∑
j=1

z*j ≥ (1 −
1
e ) OPT

Concavity

≈ 0.632


