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Martingale
Let  be a sequence of random variables{Xt}t≥0

Let  be a sequence of -algebras such that{ℱt}t≥0 σ

ℱ0 ⊆ ℱ1 ⊆ ℱ2⋯ filtration

A martingale is a sequence of pairs  s.t.{Xt, ℱt}t≥0

• for all   is -measurable 

• for all , 

t ≥ 0, Xt ℱt

t ≥ 0 E[Xt+1 ∣ ℱt] = Xt



Stopping Time
The stopping time  is a random variable 
such that

τ ∈ ℕ ∪ {∞}

 is -measurable for all [τ ≤ t] ℱt t

“whether to stop can be determined by looking at the outcomes seen so far”

• The first time a gambler wins five games in a row 

• The last time a gambler wins five games in a row



A basic property of a martingale  is 
 for any 

{Xt, ℱt}t≥0
E[Xt] = E[X0] t ≥ 0

Proof. , ∀t ≥ 1 E[Xt] = E[E[Xt ∣ ℱt−1]] = E[Xt−1]

Does  hold for a (randomized)  
stopping time ?

E[Xτ] = E[X0]
τ

Not true in general. Assume  is the first time a  
gambler wins 

τ
$100



Optional Stopping Theorem

 For a stopping time ,  holds if τ E[Xτ] = E[X0]

•  

•  

•

Pr[τ < ∞] = 1

E[ |Xτ | ] < ∞

lim
t→∞

E[Xt ⋅ 1[τ>t]] = 0



The following conditions are stronger, but easier to  
verify

1. There is a fixed  such that  a.s. 

2.  and there is a fixed  such that 
 for all  

3.  and there is a fixed  such that 
 for all 

n τ ≤ n

Pr[τ < ∞] = 1 M
|Xt | ≤ M t ≤ τ

E[τ] < ∞ c
|Xt+1 − Xt | ≤ c t < τ

OST applies when at least one of above holds



Proof of the Optional Stopping 
Theorem



Applications of OST



Random Walk in 1-D

Let  u.a.r. and Zt ∈ {−1, + 1} Xt =
t

∑
i=1

Zi

The random walk stops when it hits  or −a < 0 b > 0

Let  be the time it stops.  is a stopping time τ τ

What is ?E[τ]



The random walk stops when one of two ends  
is arrived

We first determine , the probability that the walk 
ends at , using OST

pa
−a

E[Xτ] = pa(−a) + (1 − pa)b
= E[X0] = 0

⟹ pa =
b

a + b



Now define a random variable Yt = X2
t − t

Claim.  is a martingale{Yt}t≥0

E[Yt+1 ∣ ℱt] = E[(Xt + Zt+1)2 − (t + 1) ∣ ℱt]
= E[X2

t + 2Zt+1Xt − t ∣ ℱt]
= X2

t − t = Yt



On the other hand, we have

E[X2
τ ] = pa ⋅ a2 + (1 − pa) ⋅ b2 = ab

This implies E[τ] = ab

 satisfies the condition for 
OST, so
Yτ

E[Yτ] = E[X2
τ ] − E[τ] = E[Y0] = 0



Wald’s Equation

Recall in Week two, we consider the sum 

where  are independent with mean  and  is a 
random variable

E [
N

∑
i

Xi]
{Xi} μ N

We are now ready to  
prove the general case!



Assume  is finite and let E[N] Yt =
t

∑
i=1

(Xi − μ)

 is a martingale and the stopping time  satisfies 
the conditions for OST
{Yt} N

E[YN] = E [
N

∑
i=1

(Xi − μ)] = E [
N

∑
i=1

Xi] − E [
N

∑
i=1

μ]
= E [

N

∑
i=1

Xi] − E[N] ⋅ μ = 0



Waiting Time for Patterns

Fix a pattern “00110” P =

How many fair coins one needs to toss to see  
for the first time (in expectation)?

P

Shuo-Yen Robert Li (李碩彥)

The number can be 
calculated using OST



Let the pattern P = p1p2…pk

We draw a random string B = b1b2b3…

Imagine for each , there is a gambler j ≥ 1 Gj

At time ,  bets  for “ ”. If he wins, he  
bets  for “ ”, …

j Gj $1 bj = p1
$2 bj+1 = p2

He keeps doubling the money until he loses



The money of  is a martingale (w.r.t. )Gj B

 is also a martingale{Xt}t≥1

Let  be the money of all gamblers at time Xt t

Let  be the first time that we meet  in τ P B

 and  meet the conditions for OST, so {Xt} τ E[Xτ] = 0



Now we can compute the money of each  at Gj τ

• All gamblers before  must lose 

• The gambler  wins  

• Any other gamblers can win?

τ − k + 1

Gτ−k+1 2k − 1

A gambler  wins iff Gτ−j+1 p1p2…pj = pk−j+1pk−j+2…pk

If  wins, he wins Gτ−j+1 $2j − 1



For any  and , let  be the 
indicator that 

P = p1p2…pk 1 ≤ j ≤ k χj
p1…pj = pk−j+1…pk

Then Xτ = − τ −
k

∑
j=1

χj +
k

∑
j=1

χj ⋅ (2j − 1)

contribution of losers contribution of winners

This implies E[τ] =
k

∑
j=1

χj ⋅ 2j



Read Chapter 8 of “Notes on Randomized 
Algorithms” for more details 

https://arxiv.org/abs/2003.01902

Proof of OST
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