Advanced Algorithms (V)

Shanghai Jiao Tong University

Chihao Zhang

March 30, 2020

Review

Hoeffding Inequality Let $X = \sum_{i=1}^{n} X_i$ where each $X_i \in [a_i, b_i]$. If all X_i are independent, then $\Pr\left[X - \mathbb{E}[X] \ge t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$

Given a sequence of finite variables $\{Z_n\}_{n\geq 0}$, we call it a martingale w.r.t. another sequence $\{X_n\}_{n\geq 0}$ if for all $n \geq 1$:

$$\mathbf{E}[Z_n \mid X_0, X_1, \dots, X_{n-1}] = Z_{n-1}$$

Given a sequence of finite variables $\{Z_n\}_{n\geq 0}$, we call it a martingale w.r.t. another sequence $\{X_n\}_{n\geq 0}$ if for all $n \geq 1$:

$$\mathbf{E}[Z_n \mid X_0, X_1, \dots, X_{n-1}] = Z_{n-1}$$

"≤" - super-martingale "≥" - sub-martingale

Given a sequence of finite variables $\{Z_n\}_{n\geq 0}$, we call it a martingale w.r.t. another sequence $\{X_n\}_{n\geq 0}$ if for all $n \geq 1$:

$$\mathbf{E}[Z_n \mid X_0, X_1, \dots, X_{n-1}] = Z_{n-1}$$

"\le " - super-martingale
"\ge " - sub-martingale

- Z_n is usually a function of X_0, X_1, \ldots, X_n
- Variables $\{X_n\}$ are not necessarily independent

More formally, assume the probability space is $(\Omega, \mathcal{F}, \Pr)$

More formally, assume the probability space is $(\Omega, \mathcal{F}, \Pr)$

If we use $\mathscr{F}_n = \sigma(X_0, X_1, ..., X_n)$ to denote the σ -algebra generated by $\{X_i\}_{0 \le i \le n}$, the condition becomes to

$$\mathbf{E}[Z_n \mid \mathcal{F}_{n-1}] = Z_{n-1}$$

More formally, assume the probability space is $(\Omega, \mathcal{F}, \Pr)$

If we use $\mathscr{F}_n = \sigma(X_0, X_1, ..., X_n)$ to denote the σ -algebra generated by $\{X_i\}_{0 \le i \le n}$, the condition becomes to

$$\mathbf{E}[Z_n \mid \mathcal{F}_{n-1}] = Z_{n-1}$$

 $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}$ is a family of *filtrations*

Examples

Examples

• X_1, X_2, \dots independent with $\mathbf{E}[X_i] = 0$, $Z_n = \sum_{i=1}^n X_i$

Examples

- X_1, X_2, \dots independent with $\mathbf{E}[X_i] = 0$, $Z_n = \sum_{i=1}^n X_i$
- X_1, X_2, \dots independent with $\mathbf{E}[X_i] = 1$, $Z_n = \prod_{i=1}^n X_i$

Let $\overline{X}_n = X_0, X_1, ..., X_n$ be a sequence of random variables and let $f(X_1, ..., X_n) = f(\overline{X}_n)$ be a function

Let $\overline{X}_n = X_0, X_1, ..., X_n$ be a sequence of random variables and let $f(X_1, ..., X_n) = f(\overline{X}_n)$ be a function

Define
$$\forall i \ge 0$$
, $Z_i = \mathbf{E}[f(\bar{X}_n) \mid X_1, \dots, X_i]$

Let $\overline{X}_n = X_0, X_1, ..., X_n$ be a sequence of random variables and let $f(X_1, ..., X_n) = f(\overline{X}_n)$ be a function

Define
$$\forall i \ge 0$$
, $Z_i = \mathbf{E}[f(\bar{X}_n) \mid X_1, \dots, X_i]$

 $\{Z_i\}_{i\geq 0}$ is a martingale w.r.t. $\{X_i\}_{i\geq 0}$

Let $\overline{X}_n = X_0, X_1, ..., X_n$ be a sequence of random variables and let $f(X_1, ..., X_n) = f(\overline{X}_n)$ be a function

Define
$$\forall i \ge 0$$
, $Z_i = \mathbf{E}[f(\bar{X}_n) \mid X_1, \dots, X_i]$

 $\{Z_i\}_{i\geq 0}$ is a martingale w.r.t. $\{X_i\}_{i\geq 0}$

Proof.

$$\mathbf{E}[Z_i \mid \bar{X}_{i-1}] = \mathbf{E}[\mathbf{E}[f(\bar{X}_n) \mid \bar{X}_i] \mid \bar{X}_{i-1}]$$
$$= \mathbf{E}[f(\bar{X}_n) \mid \bar{X}_{i-1}] = Z_{i-1}$$

Consider a random graph $G \sim G(n, p)$

Consider a random graph $G \sim G(n, p)$

Let F(G) be any function defined on G, e.g. $F(\cdot) = \chi(\cdot)$, the chromatic number of G

Consider a random graph $G \sim G(n, p)$

Let F(G) be any function defined on G, e.g. $F(\cdot) = \chi(\cdot)$, the chromatic number of G

For $i = 0, ..., n, X_i$ denotes the edges between vertex iand vertices j < i

Consider a random graph $G \sim G(n, p)$

Let F(G) be any function defined on G, e.g. $F(\cdot) = \chi(\cdot)$, the chromatic number of G

For $i = 0, ..., n, X_i$ denotes the edges between vertex iand vertices j < i

 $Z_i = \mathbf{E}[F(G) | X_1, \dots, X_i]$ is a Doob martingale

Let $\{X_n\}_{n \ge 1}$ be random variables such that $a_i \le X_i \le b_i$

Let $\{X_n\}_{n \ge 1}$ be random variables such that $a_i \le X_i \le b_i$

Let
$$S_n = \sum_{i=0}^n X_i$$
 be a martingale (or super-martingale)

Let $\{X_n\}_{n \ge 1}$ be random variables such that $a_i \le X_i \le b_i$

Let
$$S_n = \sum_{i=0}^n X_i$$
 be a martingale (or super-martingale)

For all $n \ge 1$ and t > 0, $\Pr[S_n - S_0 \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}}$

Let $\{X_n\}_{n \ge 1}$ be random variables such that $a_i \le X_i \le b_i$

Let
$$S_n = \sum_{i=0}^n X_i$$
 be a martingale (or super-martingale)

For all $n \ge 1$ and t > 0, $\Pr[S_n - S_0 \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}}$

The key to the proof is an upper bound on $\mathbf{E}[\exp(\delta(S_n - S_0))]$

We have

Note that
$$\mathbf{E}[\exp(\delta(S_n - S_0))] = \mathbf{E}\left[\exp\left(\delta \cdot \sum_{i=1}^n X_i\right)\right]$$

We have

Note that
$$\mathbf{E}[\exp(\delta(S_n - S_0))] = \mathbf{E}\left[\exp\left(\delta \cdot \sum_{i=1}^n X_i\right)\right]$$

We have

$$\mathbf{E}\left[\exp\left(\delta \cdot \sum_{i=1}^{n} X_{i}\right)\right] = \mathbf{E}\left[\prod_{i=1}^{n} \exp(\delta X_{i})\right]$$
$$= \mathbf{E}\left[\mathbf{E}\left[\prod_{i=1}^{n} \exp(\delta X_{i}) \left| X_{0}, \dots, X_{n-1}\right]\right]\right]$$
$$= \mathbf{E}\left[\prod_{i=1}^{n-1} \exp(\delta X_{i}) \cdot \mathbf{E}\left[\exp(\delta X_{n}) \left| X_{0}, \dots, X_{n-1}\right]\right]\right]$$

We can prove $\mathbf{E}[\exp(\delta X_n) \mid X_0, \dots, X_{n-1}] \le \exp\left(\frac{\delta^2(b_n - a_n)^2}{8}\right)$ similar to the case of the Hoeffding inequality

We can prove $\mathbf{E}[\exp(\delta X_n) \mid X_0, \dots, X_{n-1}] \le \exp\left(\frac{\delta^2(b_n - a_n)^2}{8}\right)$ similar to the case of the Hoeffding inequality

Then an induction on *n* finishes the proof

Methods of Bounded Differences

Methods of Bounded Differences

A function $f(X_1, ..., X_n)$ satisfies bounded differences condition with bounds $\{c_i\}_{1 \le i \le n}$ if
Methods of Bounded Differences

A function $f(X_1, ..., X_n)$ satisfies bounded differences condition with bounds $\{c_i\}_{1 \le i \le n}$ if

 $\forall i, \forall x_1, ..., x_n, \forall x'_i : |f(x_1, ..., x_i, ..., x_n) - f(x_1, ..., x'_i, ..., x_n)| \le c_i$

Methods of Bounded Differences

A function $f(X_1, ..., X_n)$ satisfies bounded differences condition with bounds $\{c_i\}_{1 \le i \le n}$ if

 $\forall i, \forall x_1, \dots, x_n, \forall x'_i : |f(x_1, \dots, x_i, \dots, x_n) - f(x_1, \dots, x'_i, \dots, x_n)| \le c_i$

We use f and $\{X_i\}_{i \ge 1}$ to define a Doob martingale $\{Z_i\}$

Methods of Bounded Differences

A function $f(X_1, ..., X_n)$ satisfies bounded differences condition with bounds $\{c_i\}_{1 \le i \le n}$ if

$$\forall i, \forall x_1, \dots, x_n, \forall x'_i : |f(x_1, \dots, x_i, \dots, x_n) - f(x_1, \dots, x'_i, \dots, x_n)| \le c_i$$

We use f and $\{X_i\}_{i \ge 1}$ to define a Doob martingale $\{Z_i\}$

When {*X_i*} are independent, the bounded differences condition implies $B_i \leq Z_i - Z_{i-1} \leq B_i + c_i$ for some B_i

Let *f* be a function on *n* variables satisfying bounded differences condition with $\{c_i\}_{1 \le i \le n}$

Let *f* be a function on *n* variables satisfying bounded differences condition with $\{c_i\}_{1 \le i \le n}$

Let X_1, \ldots, X_n be independent variables

Let *f* be a function on *n* variables satisfying bounded differences condition with $\{c_i\}_{1 \le i \le n}$

Let $X_1, ..., X_n$ be independent variables $\Pr[f(X_1, ..., X_n) - \mathbf{E}[f(X_1, ..., X_n)] \ge t] \le 2e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}} = Z_0$

Let *f* be a function on *n* variables satisfying bounded differences condition with $\{c_i\}_{1 \le i \le n}$

Let $X_1, ..., X_n$ be independent variables $\Pr[f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)] \ge t] \le 2e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}} = Z_0$

This is a consequence of Azuma-Hoeffding and $Z_i - Z_{i-1} \in [B_i, B_i + c_i]$ for all *i*

Proof of $B_i \le Z_i - Z_{i-1} \le B_i + c_i$

Proof of $B_i \le Z_i - Z_{i-1} \le B_i + c_i$

 $Z_{i} - Z_{i-1} = \mathbf{E}[f(\bar{X}) | \bar{X}_{i}] - \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}]$

Proof of

$$B_i \le Z_i - Z_{i-1} \le B_i + c_i$$

 $Z_{i} - Z_{i-1} = \mathbf{E}[f(\bar{X}) | \bar{X}_{i}] - \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}]$

Therefore,

$$Z_{i} - Z_{i-1} \leq \sup \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}, X_{i} = x] - \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}]$$

$$Z_{i} - Z_{i-1} \geq \inf_{y}^{x} \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}, X_{i} = y] - \mathbf{E}[f(\bar{X}) | \bar{X}_{i-1}]$$

$$:= B_{i}$$

It suffices to bound

$$\sup_{x,y} \left(\mathbf{E}[f(\bar{X}) \mid \bar{X}_{i-1}, X_i = x] - \mathbf{E}[f(\bar{X}) \mid \bar{X}_{i-1}, X_i = y] \right)$$

$$= \sup_{x,y} \left(\mathbf{E}[f_i(\bar{X}, x) \mid \bar{X}_{i-1}] - \mathbf{E}[f_i(\bar{X}, y) \mid \bar{X}_{i-1}] \right)$$

$$= \sup_{x,y} \mathbf{E}[f_i(\bar{X}, x) - f_i(\bar{X}, y \mid \bar{X}_{i-1}]]$$

It suffices to bound

$$\sup_{x,y} \left(\mathbf{E}[f(\bar{X}) \mid \bar{X}_{i-1}, X_i = x] - \mathbf{E}[f(\bar{X}) \mid \bar{X}_{i-1}, X_i = y] \right)$$

$$= \sup_{x,y} \left(\mathbf{E}[f_i(\bar{X}, x) \mid \bar{X}_{i-1}] - \mathbf{E}[f_i(\bar{X}, y) \mid \bar{X}_{i-1}] \right)$$

$$= \sup_{x,y} \mathbf{E}[f_i(\bar{X}, x) - f_i(\bar{X}, y \mid \bar{X}_{i-1}]]$$

This quantity is upper bounded by c_i by the independence of $\{X_i\}_{i \ge 0}$

• $X = (X_1, ..., X_n) \in \{0, 1\}^n$ - a random string

• $B = (B_1, ..., B_k) \in \{0, 1\}^k$ - a fixed string

• $X = (X_1, ..., X_n) \in \{0, 1\}^n$ - a random string

• $B = (B_1, ..., B_k) \in \{0, 1\}^k$ - a fixed string

What is the expected number of occurrences of B in X?

• $X = (X_1, ..., X_n) \in \{0, 1\}^n$ - a random string

•
$$B = (B_1, ..., B_k) \in \{0, 1\}^k$$
 - a fixed string

What is the expected number of occurrences of B in X?

By linearity of expectation,

$$\mathbf{E}[F] = (n-k+1)2^{-k}$$

F satisfies the bounded differences property with *k*

$F = F(X_1, ..., X_n)$ is a function of X

F satisfies the bounded differences property with *k*

$F = F(X_1, ..., X_n)$ is a function of X

So we can construct a Doob martingale where

F satisfies the bounded differences property with k

$$F = F(X_1, \dots, X_n)$$
 is a function of X

So we can construct a Doob martingale where

$$Z_0 = \mathbf{E}[F], \quad Z_i = \mathbf{E}[F \mid \bar{X}_i]$$

F satisfies the bounded differences property with *k*

So
$$\Pr[|F - \mathbf{E}[F]| \ge \delta k \sqrt{n}] \le 2e^{-2\delta^2}$$

 $F = F(X_1, ..., X_n)$ is a function of X

So we can construct a Doob martingale where

$$Z_0 = \mathbf{E}[F], \quad Z_i = \mathbf{E}[F \mid \bar{X}_i]$$

If we change one bit of *X*, how much can *F* changes?

F satisfies the bounded differences property with k

Recall the vertex exposure martingale

 $Z_0 = \mathbf{E}[\chi(G)], \quad Z_i = \mathbf{E}[\chi(G) \mid X_1, ..., X_i]$

Recall the vertex exposure martingale

$$Z_0 = \mathbf{E}[\chi(G)], \quad Z_i = \mathbf{E}[\chi(G) \mid X_1, ..., X_i]$$

Revealing the edges of a new vertex changes the chromatic number by at most 1

Recall the vertex exposure martingale

$$Z_0 = \mathbf{E}[\chi(G)], \quad Z_i = \mathbf{E}[\chi(G) \mid X_1, ..., X_i]$$

Revealing the edges of a new vertex changes the chromatic number by at most 1

So McDiarmid's Inequality implies $\Pr[|\chi(G) - \mathbb{E}[\chi(G)]| \ge \delta \sqrt{n}] \le 2e^{-2\delta^2}$

Recall the vertex exposure martingale

$$Z_0 = \mathbf{E}[\chi(G)], \quad Z_i = \mathbf{E}[\chi(G) \mid X_1, ..., X_i]$$

Revealing the edges of a new vertex changes the chromatic number by at most 1

So McDiarmid's Inequality implies $\Pr[|\chi(G) - \mathbb{E}[\chi(G)]| \ge \delta \sqrt{n}] \le 2e^{-2\delta^2}$

We obtain concentration without even knowing the expectation!