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We learnt the Markov inequality

Pr[X ≥ a] ≤
E[X]
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We can choose an increasing function  so thatf

Pr[X ≥ a] = Pr[ f(X) ≥ f(a)] ≤
E[ f(X)]

f(a)
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 yields the Chebyshev’s inequalityf(x) = x2

Pr[ |X − E[X] | ≥ a] ≤
Var[X]

a2
=

E[X2] − E[X]2

a2

What is a good choice of  ?f

-  grows fast 

-  is bounded and easy to calculate

f

E[ f(X)]
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Moment Generating Function

The function  is a natural choicef(x) = etx

The function  is called the moment 
generating function

E[ f(X)] = E[etX]

In some cases,  is easy to calculate…E[etX]
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Chernoff Bound

Assume , where each  is an 

independent Bernoulli variable with mean 

X =
n

∑
i=1

Xi Xi ∼ Ber(pi)

pi

E[etX] = E[et∑n
i=1 Xi]

=
n

∏
i=1

E[eXi] =
n

∏
i=1

(pi ⋅ et + 1 − pi)

=
n

∏
i=1

epi(et−1) = eE[X](et−1)
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For , we can deducet > 0

Let μ = E[X] =
n

∑
i=1

pi

Pr[X > (1 + δ)μ] = Pr[etX ≥ et(1+δ)μ]

≤
E[etX]
et(1+δ)μ

=
e(et−1)μ

et(1+δ)μ



For , we can deducet > 0

Let μ = E[X] =
n

∑
i=1

pi

In order to obtain a tight bound, we optimize  to 
minimize 

t

Pr[X > (1 + δ)μ] = Pr[etX ≥ et(1+δ)μ]

≤
E[etX]
et(1+δ)μ

=
e(et−1)μ

et(1+δ)μ
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Since , we can choose 

.

e(et−1)μ

et(1+δ)μ
= eμ(et−1−t(1+δ))

t = log(1 + δ) > 0

So Pr[X > (1 + δ)μ] ≤ ( eδ

(1 + δ)1+δ )
μ

We can similarly obtain (using )t < 0

Pr[X < (1 − δ)μ] ≤ ( e−δ

(1 − δ)1−δ )
μ





To summarize, for  , we haveX =
n

∑
i=1

Xi

•  

•

Pr[X ≥ (1 + δ)μ] ≤ ( eδ

(1 + δ)1+δ )
μ

Pr[X ≤ (1 − δ)μ] ≤ ( e−δ

(1 − δ)1−δ )
μ



A more useful expression is that for 0 < δ ≤ 1

•  

•

Pr[X ≥ (1 + δ)μ] ≤ e−μδ2/3

Pr[X ≤ (1 − δ)μ] ≤ e−μδ2/2

To summarize, for  , we haveX =
n

∑
i=1

Xi

•  

•

Pr[X ≥ (1 + δ)μ] ≤ ( eδ

(1 + δ)1+δ )
μ

Pr[X ≤ (1 − δ)μ] ≤ ( e−δ

(1 − δ)1−δ )
μ
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Max Load

Recall in the max load problem, we throw  balls into 
 bins

n
n

The number of balls in -th bin, i Xi ∼ Bin (n,
1
n )

Note that , what is the probability that 

?

E[Xi] = 1
Xi >

c log n
log log n
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c log n
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Applying Chernoff bound, we obtain

Pr[Xi ≥
c log n

log log n
] ≤

eδ

(1 + δ)1+δ
≤ n−c+o(1),



In this case, .1 + δ =
c log n

log log n

Applying Chernoff bound, we obtain

Pr[Xi ≥
c log n

log log n
] ≤

eδ

(1 + δ)1+δ
≤ n−c+o(1),

which is tight in order comparing to our analytic 
result.
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The Chernoff bound has a few drawbacks:

• each  needs to be independent. 

•  is required to follow the 

Xi

Xi Ber(pi)

We will try to generalize the Chernoff bound to 
overcome these issues
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Hoeffding Inequality

The Hoeffding Inequality generalizes to those  with 
 and .

Xi
E[Xi] = 0 ai ≤ Xi ≤ bi

Pr [
n

∑
i=1

Xi ≥ t] ≤ exp (−
2t2

∑n
i=1 (bi − ai)2 )
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an upper bound on the moment generating function
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The key property to establish Hoeffding inequality is 
an upper bound on the moment generating function

Lemma 

Assume  satisfies  and , then  

                     

X X ∈ [a, b] E[X] = 0

E[etX] ≤ exp ( t2

8
(b − a)2)

You can find the proof of the lemma and Hoeffding 
inequality in the book Probability and Computing
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Multi-Armed Bandit

In the problem of MAB, there are  banditsk

The goal is to identify the best arm via trials

• each bandit has a unknown random reward  
distribution  on  with  

• each round one can pull an arm  and obtain 
a reward 

fi [0,1] μi = E[ fi]

i
r ∼ fi
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Regret of MAB

If the game is played for  rounds, the best reward 
on can obtain is  in expectation

T
Tμ1

We are often not so lucky to achieve this, so the 
goal is to find a strategy to minimize

R(T) = Tμ1 −
T

∑
t=1

μat

 - the arm actually 
pulled at round 
at

tRegret Best Reward

We assume μ1 = max
1≤i≤k

μi
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What is a good strategy?

We view  as a function of  and consider R(T) T T → ∞

If we eventually find the best arm, then R(T) = o(T)

If we fail to find the best arm, we will suffer a regret 
, where  the gap between the optimal and 

suboptimal rewards
Ω(ΔT) Δ

So we need the failure probability is O(1/T)
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The Upper Confidence 
Bound Algorithm

We collect information up to round T

•  - number of times that -th arm has been  
pulled 

•  - estimate of the mean , which is equal to 

 if  and  is the 

reward at -th round

ni(T) i

̂μi(T) μi
∑T

t=1 1[at = i] ⋅ r(t)

ni(T)
ni(T) ≠ 0 r(t)

t
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Choose the Best Arm So Far?

The most straightforward idea is to choose the arm 
with best ̂μi(T)

The strategy might be inferior in case that we are 
unlucky so that the best arm performs bad at the first 
few trials.

So we have to add some offset term for those arms 
that are not “well-explored”
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The UCB algorithm chooses the arm with largest

̂μi(T) + ci(T)  - the confidence 
term of arm  at round 
ci(T )

i T

Intuitively,  should be decreasing in , so we give 
more chances to arms that have not been well-tested

ci(T) ni

Let’s find out how to set ci(T)
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We need the following event to happen whp

∀2 ≤ i ≤ k, ̂μ1(T) + c1(T) > ̂μi(T) + ci(T)

A sufficient condition for this is

̂μ1(T) + c1(T) > μ1 > μi + 2ci(T) > ̂μi(T) + ci(T)

: > + > ∀j, ̂μj(T) − cj(T) < μj < ̂μj(T) + cj(T)

: > ∀i ≥ 2, ci(T) <
μ1 − μi

2
Trade-off on cj(T)
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We apply Hoeffding inequality to bound the  
probability of

∀j, ∀t ≤ T, ̂μj(t) − cj(t) < μj < ̂μj(t) + cj(t)

Pr[ | ̂μj(t) − μj | > cj(t)] ≤ 2 exp (−
2c2

j

nj(1/nj)2 ) = 2 exp(−2c2
j nj)

So the Hoeffding inequality suggests us to choose 

cj(T) = Ω( log T
nj(T) )
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For this choice of , the condition  

becomes to 

ci(T) ci(T) <
μ1 − μi

2

c log T
ni(T)

<
μ1 − μi

2

This means  , so we need to try each 
arm  times for free!

ni(T) = Ω(log T)
Ω(log T)



Some tedious calculations are required to obtain the  
final regret bound, which is Θ(log T)

For this choice of , the condition  

becomes to 

ci(T) ci(T) <
μ1 − μi

2

c log T
ni(T)

<
μ1 − μi

2

This means  , so we need to try each 
arm  times for free!

ni(T) = Ω(log T)
Ω(log T)


