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Throw  balls into  bins uniformly at random m n

• What is the chance that some bin contains more 
than one balls? (Birthday paradox)

• How large is  to hit all bins (Coupon Collector)m

• How many balls in the fullest bin? (Max load)
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Pr[no same birthday] ≤ exp (−
m(m − 1)

2n )

For , , the probability is less than 0.304m = 30 n = 365

For , the probability can be arbitrarily 

close to 0.

m = O ( n)
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Max Load

Let  be the number of balls in the -th binXi i

What is  We analyze this when X = max
i∈[n]

Xi? m = n

If we can argue that,  is less than  with  

probability , then by union bound, 

X1 k

1 − O ( 1
n )

Pr[X ≥ k] = O(1)
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Again by union bound, Pr[X1 ≥ k] ≤ (n
k) n−k ≤

1
k!

We apply the Stirling’s formula k! ≈ 2πk ( k
e )

k

So Pr[X ≥ k] ≤
1
k!

≤ ( e
k )

k

We want . Choose ( e
k )

k

= O ( 1
n ) k = O ( log n

log log n )



Concentration Bounds



Concentration Bounds

We shall develop general tools to obtain “with high 
probability” results…



Concentration Bounds

We shall develop general tools to obtain “with high 
probability” results…

These results are critical for analyzing randomized 
algorithms



Concentration Bounds

We shall develop general tools to obtain “with high 
probability” results…

This is the main topic in the coming 4-5 weeks

These results are critical for analyzing randomized 
algorithms
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Markov Inequality

Markov Inequality 

For any nonnegative random variable  and , 

                          

X a > 0

Pr[X > a] ≤
E[X]

a

E[X] = E[X ∣ X > a] ⋅ Pr[X > a] + E[X |X ≤ a] ⋅ Pr[X ≤ a]
≥ a ⋅ Pr[X > a]

Proof. 
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Applications
• A Las-Vegas randomized algorithm with expected 

 running time terminates in  time with 

probability  

O(n) O(n2)

1 − O ( 1
n )

• In -balls-into- -bins problem, . Son n E[Xi] = 1

Pr [X1 >
log n

log log n ] ≤
log log n

log n

This is far from the truth…
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Chebyshev’s Inequality
A common trick to improve concentration is to 
consider  instead of  for some non-
decreasing 

E[ f(X)] E[X]
f : ℝ → ℝ

Pr [X ≥ a] = Pr [f(X) ≥ f(a)] ≤
E [f(X)]

f(a)

 gives the Chebyshev’s inequalityf(x) = x2

Pr[X ≥ a] ≤
E[X2]

a2
 or Pr [ |X − E[X] | ≥ a] ≤

Var[X]
a2
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Coupon Collector

Recall the coupon collector problem is to ask

“How many ball one needs to throw so that none 
of the  bins is empty?”n

We already established that E[X] = nHn ≈ n(log n + γ)

The Markov inequality only provides a very weak 
concentration…
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In order to apply Chebyshev’s inequality, we need to 
compute  Var[X] = E[X2] − (E[X])2

Recall that  where each  follows geometric 

distribution with parameter 

X =
n−1

∑
i=0

Xi Xi

n − i
n

 are independent, soX0, …, Xn−1

Var [
n−1

∑
i=0

Xi] =
n−1

∑
i=0

Var[Xi]



Variance of Geometric Variables

Assume  follow geometric distribution with 
parameter 

Y
p

E[Y2] =
∞

∑
i=1

i2(1 − p)i−1p =
2 − p

p2

Var[Y] = E[Y2] − (E[Y])2 =
1 − p

p2
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Var[X] =
n−1

∑
i=0

Var[Xi] =
n−1

∑
i=0

n ⋅ i
(n − i)2

≤ n2
n−1

∑
i=0

1
(n − i)2

= n2 ( 1
12

+
1
22

+
1
32

+ … +
1
n2 ) =

π2n2

6
.

By Chebyshev’s inequality,

Pr[X ≥ nHn + cn] ≤
π2

6c2

The use of Chebyshev’s inequality is often referred to 
as the “second-moment method”
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Random Graph
Erdős–Rényi random graph G(n, p)

Given a graph property ,  define its threshold function 
 as:

P
r(n)

 vertices, each edge appears with probability  
independently
n p

• if ,  does not satisfy  whp; 

• if ,  satisfies P whp.

p ≪ r(n) G ∼ G(n, p) P

p ≫ r(n) G ∼ G(n, p)
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We will show that the property 
 
                         “  contains a -clique”  
 
has threshold function 

P = G 4

n−2/3

For every , let  be the indicator that  

“  is a clique”.

S ∈ ([n]
4 ) XS

G[S]

Let , then  satisfies  iff .X = ∑
S∈([n]

4 )
XS G P X > 0
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Then E[X] = ∑
S∈([n]

4 )
E[XS] ≈

n4p6

24
.

If , . So by Markov inequalityp ≪ n− 2
3 E[X] = o(1)

Pr[X ≥ 1] ≤ E[X] = o(1)
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We require some control over Var[X]
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It is not necessary that  implies 
. (Why?)
E[X] = Ω(1)

Pr[X > 0] = 1 − o(1)

We require some control over Var[X]

By Chebyshev’s inequality, 

Pr[X = 0] ≤ Pr[ |X − E[X] | ≥ E[X]] ≤
Var[X]
E[X]2

=
E[X2]
E[X]2

− 1

A sufficient condition is  E[X2] = (1 + o(1)) ⋅ E[X]2





E[X2] − E[X]2

= E[( ∑
S∈([n]

4 )
XS)2] − (E[ ∑

S∈([n]
4 )

XS])2

= ∑
S,T∈([n]

4 ):|S∩T|=2

(E[XS ⋅ XT] − E[X]E[XT])+

∑
S,T∈([n]

4 ):|S∩T|=3

(E[XS ⋅ XT] − E[XS]E[XT])+

∑
S∈([n]

4 )
(E[X2

S] − E[XS]2)

≤ n6p11 + n5p9 + n4p6 = o(E[X]2)


