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Balls-into-Bins

Throw  balls into  bins uniformly at random m n

• What is the chance that some bin contains more 
than one balls? (Birthday paradox)

• How large is  to hit all bins (Coupon Collector)m

• How many balls in the fullest bin? (Max load)



Birthday Paradox
In a group of more than 30 people, which very high 
chances that two of them have the same birthday

Pr[no same birthday]

≤ 1 ⋅ ( n − 1
n ) ⋅ ( n − 2

n )…( n − m + 1
n )

=
m−1

∏
i=1

(1 −
i
n ) ≤ exp −

∑m−1
i=1 i

n
= exp (−

m(m − 1)
2n )



Pr[no same birthday] ≤ exp (−
m(m − 1)

2n )

For , , the probability is less than 0.304m = 30 n = 365

For , the probability can be arbitrarily 

close to 0.

m = O ( n)



Max Load

Let  be the number of balls in the -th binXi i

What is  We analyze this when X = max
i∈[n]

Xi? m = n

If we can argue that,  is less than  with  

probability , then by union bound, 

X1 k

1 − O ( 1
n )

Pr[X ≥ k] = O(1)



Again by union bound, Pr[X1 ≥ k] ≤ (n
k) n−k ≤

1
k!

We apply the Stirling’s formula k! ≈ 2πk ( k
e )

k

So Pr[X ≥ k] ≤
1
k!

≤ ( e
k )

k

We want . Choose ( e
k )

k

= O ( 1
n ) k = O ( log n

log log n )



Concentration Bounds

We shall develop general tools to obtain “with high 
probability” results…

This is the main topic in the coming 4-5 weeks

These results are critical for analyzing randomized 
algorithms



Markov Inequality

Markov Inequality 

For any nonnegative random variable  and , 

                          

X a > 0

Pr[X > a] ≤
E[X]

a

E[X] = E[X ∣ X > a] ⋅ Pr[X > a] + E[X |X ≤ a] ⋅ Pr[X ≤ a]
≥ a ⋅ Pr[X > a]

Proof. 



Applications
• A Las-Vegas randomized algorithm with expected 

 running time terminates in  time with 

probability  

O(n) O(n2)

1 − O ( 1
n )

• In -balls-into- -bins problem, . Son n E[Xi] = 1

Pr [X1 >
log n

log log n ] ≤
log log n

log n

This is far from the truth…



Chebyshev’s Inequality
A common trick to improve concentration is to 
consider  instead of  for some non-
decreasing 

E[ f(X)] E[X]
f : ℝ → ℝ

Pr [X ≥ a] = Pr [f(X) ≥ f(a)] ≤
E [f(X)]

f(a)

 gives the Chebyshev’s inequalityf(x) = x2

Pr[X ≥ a] ≤
E[X2]

a2
 or Pr [ |X − E[X] | ≥ a] ≤

Var[X]
a2



Coupon Collector

Recall the coupon collector problem is to ask

“How many ball one needs to throw so that none 
of the  bins is empty?”n

We already established that E[X] = nHn ≈ n(log n + γ)

The Markov inequality only provides a very weak 
concentration…



In order to apply Chebyshev’s inequality, we need to 
compute  Var[X] = E[X2] − (E[X])2

Recall that  where each  follows geometric 

distribution with parameter 

X =
n−1

∑
i=0

Xi Xi

n − i
n

 are independent, soX0, …, Xn−1

Var [
n−1

∑
i=0

Xi] =
n−1

∑
i=0

Var[Xi]



Variance of Geometric Variables

Assume  follow geometric distribution with 
parameter 

Y
p

E[Y2] =
∞

∑
i=1

i2(1 − p)i−1p =
2 − p

p2

Var[Y] = E[Y2] − (E[Y])2 =
1 − p

p2



Var[X] =
n−1

∑
i=0

Var[Xi] =
n−1

∑
i=0

n ⋅ i
(n − i)2

≤ n2
n−1

∑
i=0

1
(n − i)2

= n2 ( 1
12

+
1
22

+
1
32

+ … +
1
n2 ) =

π2n2

6
.

By Chebyshev’s inequality,

Pr[X ≥ nHn + cn] ≤
π2

6c2

The use of Chebyshev’s inequality is often referred to 
as the “second-moment method”



Random Graph
Erdős–Rényi random graph G(n, p)

Given a graph property ,  define its threshold function 
 as:

P
r(n)

 vertices, each edge appears with probability  
independently
n p

• if ,  does not satisfy  whp; 

• if ,  satisfies P whp.

p ≪ r(n) G ∼ G(n, p) P

p ≫ r(n) G ∼ G(n, p)



We will show that the property 
 
                         “  contains a -clique”  
 
has threshold function 

P = G 4

n−2/3

For every , let  be the indicator that  

“  is a clique”.

S ∈ ([n]
4 ) XS

G[S]

Let , then  satisfies  iff .X = ∑
S∈([n]

4 )
XS G P X > 0



Then E[X] = ∑
S∈([n]

4 )
E[XS] ≈

n4p6

24
.

If , . So by Markov inequalityp ≪ n− 2
3 E[X] = o(1)

Pr[X ≥ 1] ≤ E[X] = o(1)



It is not necessary that  implies 
. (Why?)
E[X] = Ω(1)

Pr[X > 0] = 1 − o(1)

We require some control over Var[X]

By Chebyshev’s inequality, 

Pr[X = 0] ≤ Pr[ |X − E[X] | ≥ E[X]] ≤
Var[X]
E[X]2

=
E[X2]
E[X]2

− 1

A sufficient condition is  E[X2] = (1 + o(1)) ⋅ E[X]2



E[X2] − E[X]2

= E[( ∑
S∈([n]

4 )
XS)2] − (E[ ∑

S∈([n]
4 )

XS])2

= ∑
S,T∈([n]

4 ):|S∩T|=2

(E[XS ⋅ XT] − E[X]E[XT])+

∑
S,T∈([n]

4 ):|S∩T|=3

(E[XS ⋅ XT] − E[XS]E[XT])+

∑
S∈([n]

4 )
(E[X2

S] − E[XS]2)

≤ n6p11 + n5p9 + n4p6 = o(E[X]2)


