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Recall that a probability space is a tuple (Ω, ℱ, Pr)

A random variable  is a function X X : Ω → ℝ

In this course, we mainly focus on countable Ω

The expectation E[X] = ∑
a∈Ω:Pr[X=a]>0

a ⋅ Pr[X = a]
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Linearity of Expectations
For any  random variables n X1, …, Xn

E [
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[X1 + X2] = ∑
a,b

(a + b) ⋅ Pr[X1 = a, X2 = b]

= ∑
a,b

a ⋅ Pr[X1 = a, X2 = b] + ∑
a,b

b ⋅ Pr[X1 = a, X2 = b]

= ∑
a

a ⋅ Pr[X1 = a] + ∑
b

b ⋅ Pr[X2 = b] = E[X1] + E[X2]
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Coupon Collector

There are  coupons to collect…n

Each time one coupon is drawn independently 
uniformly at random

How many times one needs to draw to collect all 
coupons?
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Let  be the number of draws between -th distinct 
coupon to the -th distinct coupon

Xi i
i + 1

Number of draws = X :=
n−1

∑
i=0

Xi

For any ,  follows geometric distribution with 

probability 

i Xi
n − i

n
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Geometric Distribution
Let  be a random variable following geometric 
distribution with probability .

X
p

Namely, we toss a coin who comes to HEAD with 
probability ,  is the number of tosses to see the first 
HEAD.

p X

It is not hard to see that E[X] =
1
p
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Back to Coupon Collector…

E[X] = E [
n−1

∑
i=0

Xi] =
n−1

∑
i=0

E[Xi]

=
n−1

∑
i=0

n
n − i

=
n
n

+
n

n − 1
+

n
n − 2

+ … +
n
1

= n ⋅ H(n) → n log n + γn

The constant  is called Euler constantγ = 0.577...
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Linearity may fail when…
• n = ∞

St. Petersburg paradox  

Each stage of the game a fair coin is tossed and 
a gambler guesses the result. He wins the 
amount he bet if his guess is correct and lose the 
money if he is wrong. He bets  at the first 
stage. If he loses, he doubles the money and bets 
again. The game ends when the gambler wins.

$1
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What is the expected money he wins?

- In stage , he wins  with ,  

- so 

i Xi E[Xi] = 0
∞

∑
i=1

E[Xi] = 0

- On the other hand, he eventually wins , 

- so !

$1

E [
∞

∑
i=1

Xi] = 1 ≠
∞

∑
i=1

E[Xi]
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Linearity may fail when…
•  is randomn = N

Suppose we draw a number  and toss  dices  

, what is ?

N N

X1, …, XN E [
N

∑
i=1

XN]





Each  is uniform in , one might expect Xi {1,…,6}
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If  itself is drawn by tossing a dice and let  N
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Then E [
N

∑
i=1

Xi] = E[N ⋅ N] = 15.166..

If  itself is drawn by tossing a dice and let  N
X1 = X2 = … = XN = N

Each  is uniform in , one might expect Xi {1,…,6}

E [
N

∑
i=1

Xi] = E[N] ⋅ E[X1] = 3.5 × 3.5 = 12.25
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Wald’s Equation
If the variables satisfy

-  and all  are independent and finite; 

- All  are identically distributed

N Xi

Xi

N

∑
i=1

E [Xi] = E[N] ⋅ E[X1]

More generally if  is a stopping timeN
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Application: Quick Select
Find the -th largest number in an unsorted array k A

Find( ) 

Randomly choose a pivot   

1. Partition  into  such that 
,  

2. If , return  

3. If , return Find( ) 

4. return Find( )

A, k
x ∈ A

A − {x} A1, A2
∀y ∈ A1, y < x ∀z ∈ A2, z > x

|A1 | = k − 1 x
|A1 | ≥ k A1, k

A2, k − |A1 | − 1
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The partition step takes  timeO( |A | )

What is the total time cost in expectation?

 - size of  at -th round 

 and  

The time cost is 

Xi A i

X1 = n E[Xi+1 ∣ Xi] ≤
3
4

Xi

∞

∑
i=1

Xi





E[Xi+1 ∣ Xi] ≤
3
4

Xi

⟹ E[Xi+1] = E[E[Xi+1 ∣ Xi]] ≤
3
4

E[Xi] ≤ ( 3
4 )

i

n



E[Xi+1 ∣ Xi] ≤
3
4

Xi

⟹ E[Xi+1] = E[E[Xi+1 ∣ Xi]] ≤
3
4

E[Xi] ≤ ( 3
4 )

i

n

E [
∞

∑
i=1

Xi] = E [
n

∑
i=1

Xi]
=

n

∑
i=1

E[Xi] ≤
n

∑
i=1

( 3
4 )

i−1

n

= 4n .
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KUW inequality

While analyzing random algorithms, a common  
recursion is  for random T(n) = 1 + T(n − Xn) Xn

Theorem. (Karp-Upfal-Wigderson Inequality) 

Assume for every ,  is an integer for some  such that 
. If  for all , where  is positive and 

increasing , then 

                                       

n 0 ≤ Xn ≤ n − a a
T(a) = 0 E[Xn] ≥ μ(n) n > a μ(n)

E[T(n)] ≤ ∫
n

a

1
μ(t)

dt
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Application: Expectation of 
Geometric Variables

T(1) = 1 + T(1 − X1), where E[X1] = p

Choosing  gives μ(n) = p E[T(1)] ≤ ∫
1

0

1
p

dt =
1
p

.
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Application: Rounds of 
Quick Select

In our Find( ) algorithm, we haveA, k

T(n) = 1 + max{T(m), T(n − m − 1)},

where  is in  uniformly at random.m {1,2,…, n − 1}

We can choose   (Why?)μ(n) =
n
4

KUW implies E[T(n)] ≤ ∫
n

1

4
t

dt = 4 log n
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Application: Coupon 
Collector

 where T(m) = 1 + T(n − Xm) Xm ∼ Ber(m/n)

So we can choose μ(m) =
⌈m⌉

n

KUW implies E[T(n)] ≤ ∫
n

0

n
⌈t⌉

dt = n ⋅ Hn



Proof of KUW inequality


