
Advanced Algorithms (XIV)

Shanghai Jiao Tong University 

Chihao Zhang

June 8, 2020



Mixing Time via Coupling



Mixing Time via Coupling
The state space Ω



Mixing Time via Coupling
The state space Ω

Transition matrix P ∈ ℝΩ×Ω



Mixing Time via Coupling
The state space Ω

Two chains  and (X0, X1, …) (Y0, Y1, …)

Transition matrix P ∈ ℝΩ×Ω



Mixing Time via Coupling
The state space Ω

Two chains  and (X0, X1, …) (Y0, Y1, …)

Transition matrix P ∈ ℝΩ×Ω

A distance d : Ω × Ω → ℝ≥0



Mixing Time via Coupling
The state space Ω

Two chains  and (X0, X1, …) (Y0, Y1, …)

Transition matrix P ∈ ℝΩ×Ω

A distance d : Ω × Ω → ℝ≥0

Two chains are “coupled” so that:



Mixing Time via Coupling
The state space Ω

Two chains  and (X0, X1, …) (Y0, Y1, …)

Transition matrix P ∈ ℝΩ×Ω

A distance d : Ω × Ω → ℝ≥0

Two chains are “coupled” so that:

E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ (1 − α) ⋅ d(Xt, Yt)
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In other words,  is a super martingale{d(Xt, Yt)}t≥0

Recall the mixing time

By coupling lemma

dTV(Xt, Yt) ≤ Pr[Xt ≠ Yt] = Pr[d(Xt, Yt) > 0]

For finite , we assume WLOG that  Ω min
x,y∈Ω:x≠y

d(x, y) = 1

Pr[d(Xt, Yt) > 0] = Pr[d(Xt, Yt) ≥ 1]
≤ E[d(Xt, Yt)] ≤ (1 − α)t ⋅ d(X0, Y0)
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Sampling Proper Colorings

 - the number of proper coloringsq

 - a graph of maximum degree  G Δ

Is  colorable using  colors?G q
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The problem is NP-hard in general

We consider the case when q > Δ

Consider the chain obtained via the “Metropolis Rule”

•Pick  and  u.a.r. 

•Recolor  with  if possible

v ∈ V c ∈ [q]

v c

The chain is irreducible when q ≥ Δ + 2
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The Coupling
Two chains choose the same  and v c

Pr[ ⋅ ] ≥
d(Xt, Yt)

N
⋅

q − 2(Δ − 1)
qv v

c =

Good Move

Xt Yt

v v

c =

Bad Move

Xt Yt

Pr[ ⋅ ] ≤
2d(Xt, Yt)Δ

Nq

d(Xt+1, Yt+1) = d(Xt, Yt) − 1

d(Xt+1, Yt+1) = d(Xt, Yt) + 1





E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )



E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )

So if , we haveq ≥ 4Δ − 1



E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )

So if , we haveq ≥ 4Δ − 1

E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ (1 −
1

qN ) d(Xt, Yt)



E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )

So if , we haveq ≥ 4Δ − 1

E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ (1 −
1

qN ) d(Xt, Yt)



E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )

So if , we haveq ≥ 4Δ − 1

E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ (1 −
1

qN ) d(Xt, Yt)

dTV(Xt, Yt) ≤ (1 −
1

qN )
t

⋅ N ≤ ε



E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ d(Xt, Yt) ⋅ (1 +
2Δ − (q − 2Δ + 2))

qN )
= d(Xt, Yt) ⋅ (1 −

q − 4Δ + 2
qN )

So if , we haveq ≥ 4Δ − 1

E[d(Xt+1, Yt+1) ∣ (Xt, Yt)] ≤ (1 −
1

qN ) d(Xt, Yt)

dTV(Xt, Yt) ≤ (1 −
1

qN )
t

⋅ N ≤ ε

⟹ τmix(ε) ≤ qN (log N + log ε−1)
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Geometric View of Mixing

A Markov chain is a random walk on the state space

Which random walk mixes faster?

We will develop tools to formalize the intuition



Back to Graph Spectrum


