
Advanced Algorithms (XIII)

Shanghai Jiao Tong University 

Chihao Zhang

June 1, 2020



Total Variation Distance



Total Variation Distance
Let  and  be two distributions on μ ν Ω



Total Variation Distance
Let  and  be two distributions on μ ν Ω

Their total variation distance is



Total Variation Distance
Let  and  be two distributions on μ ν Ω

Their total variation distance is

dTV(μ, ν) =
1
2 ∑

x∈Ω

μ(x) − ν(x) = max
A⊆Ω

μ(A) − ν(A)



Total Variation Distance
Let  and  be two distributions on μ ν Ω

Their total variation distance is

dTV(μ, ν) =
1
2 ∑

x∈Ω

μ(x) − ν(x) = max
A⊆Ω

μ(A) − ν(A)

A

μ

ν



Total Variation Distance
Let  and  be two distributions on μ ν Ω

Their total variation distance is

dTV(μ, ν) =
1
2 ∑

x∈Ω

μ(x) − ν(x) = max
A⊆Ω

μ(A) − ν(A)

A

μ

ν

-distance scaled by ℓ1
1
2



Coupling



Coupling

Let  and  be two distributions on μ ν Ω



Coupling

Let  and  be two distributions on μ ν Ω

A coupling of  and  is a joint distribution  on  
 such that:

μ ν ω
Ω × Ω



Coupling

Let  and  be two distributions on μ ν Ω

A coupling of  and  is a joint distribution  on  
 such that:

μ ν ω
Ω × Ω

∀x ∈ Ω, μ(x) = ∑
y∈Ω

ω(x, y)



Coupling

Let  and  be two distributions on μ ν Ω

A coupling of  and  is a joint distribution  on  
 such that:

μ ν ω
Ω × Ω

∀x ∈ Ω, μ(x) = ∑
y∈Ω
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Let  be a coupling of  and ω μ ν
    and (X, Y ) ∼ ω ⟹ X ∼ μ Y ∼ ν

Then Pr
(X,Y)∼ω

[X ≠ Y] ≥ dTV(μ, ν)

Moreover, there exists  such thatω*

Pr
(X,Y)∼ω*

[X ≠ Y] = dTV(μ, ν)
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the sum of diagonals
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Consider two copies of the chain :P

A coupling of the two chains is joint distribution 
 of  and  satisfying the following 

conditions
ω {μt}t≥0 {νt}t≥0

• The initial distribution is  and  

•  and 

μ0 ν0

μT
t = μT

0 Pt νT
t = νT
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 is a pair of processes such that{(Xt, Yt)}t≥0 ∼ ω

∀a, b ∈ Ω, Pr[Xt+1 = b ∣ Xt = a] = P(a, b)

∀a, b ∈ Ω, Pr[Yt+1 = b ∣ Xt = a] = P(a, b)

Marginally,  and  are both chain {Xt} {Yt} P

∀t ≥ 0, Xt = Yt ⟹ Xt′ 
= Yt′ 

for all t′ > t

Two chains coalesce once they meet
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Fundamental Theorem via Coupling

If a finite chain  is irreducible and aperiodic, then it has a 
unique stationary distribution . Moreover, for any initial 
distribution , it holds that 

P
π

μ

lim
t→∞

μTPt = πT

Consider two chains  and {Xt}t≥0 {Yt}t≥0

• ,  for arbitrary X0 ∼ π Y0 ∼ μ0 μ0

•A coupling where  and  run independentlyXt Yt
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Pr[Xt ≠ Yt] ≤ 1 − θ < 1

…

Pr[Xkt ≠ Ykt] ≤ (1 − θ)k

lim
n→∞

Pr[Xn ≠ Yn] = 0
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Mixing Time
The mixing time  is the the first time  
such that the total variation distance between 

 and  is at most , for any initial 

τmix(ε) t

Xt π ε X0

τmix(ε) = max
μ0

min
t≥0

dTV(μT
0 Pt, π) ≤ ε

τmix = τmix(1/4)
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Standing at  

•with prob. , do nothing 

•otherwise, choose  u.a.r and flip 

x ∈ {0,1}n

1
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Lazy walk on G
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The chain is equivalent to 

• choose  and  u.a.r. 

• change 

i ∈ [n] b ∈ {0,1}

x(i) ← b

Let  and  be two walksXt Yt

We couple them by choosing the same  and i b
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What is the probability that ?Xt ≠ Yt

Coupon Collector!

If , then t ≥ n log n + cn Pr[Xt ≠ Yt] ≤ e−c

Coupling lemma implies that

τmix(ε) ≤ n log n + n log ε−1
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Another Random Walk

 
Standing at  

•with prob. , do nothing 

•otherwise, choose  u.a.r and flip 

x ∈ {0,1}n

1
n + 1

i ∈ [n] x(i)

Lazy walk on G

A coupling argument implies τmix ≤
1
2

n log n + O(n)
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Reversible Chain

Recall that we say a Markov chain  is reversible 
with respect to  if 

P
π

∀x, y ∈ Ω, π(x)P(x, y) = π(y)P(y, x)

Then  is a stationary distribution of π P

We showed that spectral decomposition is a 
powerful tool to analyze reversible chains
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Relaxation Time

λ⋆ := max
1≤i≤n−1

|λi |

τrel :=
1

1 − λ⋆

For reversible, irreducible, aperiodic chains:

(τrel − 1)log ( 1
2ε ) ≤ τmix(ε) ≤ τrel log ( 1

επmin )
πmin := min

x
π(x)


