Advanced Algorithms (XIII)

Shanghai Jiao Tong University

Chihao Zhang

June 1, 2020

Let μ and ν be two distributions on Ω

Let μ and ν be two distributions on Ω

Their total variation distance is

Let μ and ν be two distributions on Ω

Their total variation distance is

$$d_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} \left| \mu(x) - \nu(x) \right| = \max_{A \subseteq \Omega} \mu(A) - \nu(A)$$

Let μ and ν be two distributions on Ω

Their total variation distance is

$$d_{\rm TV}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)| = \max_{A \subseteq \Omega} \mu(A) - \nu(A)$$

Let μ and ν be two distributions on Ω

Their total variation distance is

$$d_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} \left| \mu(x) - \nu(x) \right| = \max_{A \subseteq \Omega} \mu(A) - \nu(A)$$

 ℓ_1 -distance scaled by $\frac{1}{2}$

Let μ and ν be two distributions on Ω

Let μ and ν be two distributions on Ω

A coupling of μ and ν is a joint distribution ω on $\Omega \times \Omega$ such that:

Let μ and ν be two distributions on Ω

A coupling of μ and ν is a joint distribution ω on $\Omega \times \Omega$ such that:

$$\forall x \in \Omega, \quad \mu(x) = \sum_{y \in \Omega} \omega(x, y)$$

Let μ and ν be two distributions on Ω

A coupling of μ and ν is a joint distribution ω on $\Omega \times \Omega$ such that:

$$\forall x \in \Omega, \quad \mu(x) = \sum_{y \in \Omega} \omega(x, y)$$

$$\forall y \in \Omega, \quad \nu(x) = \sum_{x \in \Omega} \omega(x, y)$$

Let ω be a coupling of μ and ν

Let ω be a coupling of μ and ν

$$(X, Y) \sim \omega \Longrightarrow X \sim \mu \text{ and } Y \sim \nu$$

Let ω be a coupling of μ and ν

$$(X, Y) \sim \omega \Longrightarrow X \sim \mu \text{ and } Y \sim \nu$$

Then

$$\Pr_{(X,Y)\sim\omega}[X\neq Y] \ge d_{\mathrm{TV}}(\mu,\nu)$$

Let ω be a coupling of μ and ν

$$(X, Y) \sim \omega \Longrightarrow X \sim \mu \text{ and } Y \sim \nu$$

Then $\Pr_{(X,Y)\sim\omega} [X \neq Y] \ge d_{\text{TV}}(\mu,\nu)$

Moreover, there exists ω^* such that

Let ω be a coupling of μ and ν

$$(X, Y) \sim \omega \Longrightarrow X \sim \mu \text{ and } Y \sim \nu$$

Then $\Pr_{(X,Y)\sim\omega} [X \neq Y] \ge d_{\text{TV}}(\mu,\nu)$

Moreover, there exists ω^* such that

$$\Pr_{(X,Y)\sim\omega^*}[X\neq Y] = d_{TV}(\mu,\nu)$$

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

\mathcal{V}^{μ}	$\frac{1}{2}$	$\frac{1}{2}$	
$\frac{1}{3}$	$\frac{1}{3}$		
$\frac{2}{3}$		$\frac{1}{2}$	

$$\Omega = \{1,2\}, \, \mu = (1/2,1/2), \, \nu = (1/3,2/3)$$

\mathcal{V}^{μ}	$\frac{1}{2}$	$\frac{1}{2}$	
$\frac{1}{3}$	$\frac{1}{3}$	0	
$\frac{2}{3}$		$\frac{1}{2}$	

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

\mathcal{V}^{μ}	$\frac{1}{2}$	$\frac{1}{2}$	
$\frac{1}{3}$	$\frac{1}{3}$	0	
$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	

For finite Ω , designing a coupling is equivalent to filling a $\Omega \times \Omega$ matrix so that the marginals are correct

$$\Omega = \{1,\!2\}, \, \mu = (1/2,\!1/2), \, \nu = (1/3,\!2/3)$$

 ω^* is the one maximizing the sum of diagonals

Consider two copies of the chain *P*:

Consider two copies of the chain *P*:

• The initial distribution is μ_0 and ν_0

•
$$\mu_t^T = \mu_0^T P^t$$
 and $\nu_t^T = \nu_0^T P^t$

Consider two copies of the chain *P*:

• The initial distribution is μ_0 and ν_0

•
$$\mu_t^T = \mu_0^T P^t$$
 and $\nu_t^T = \nu_0^T P^t$

A coupling of the two chains is joint distribution ω of $\{\mu_t\}_{t\geq 0}$ and $\{\nu_t\}_{t\geq 0}$ satisfying the following conditions

$\forall a, b \in \Omega, \Pr[X_{t+1} = b \mid X_t = a] = P(a, b)$

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[X_{t+1} = b \mid X_t = a] = P(a, b)$$

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[Y_{t+1} = b \mid X_t = a] = P(a, b)$$

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[X_{t+1} = b \mid X_t = a] = P(a, b)$$

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[Y_{t+1} = b \mid X_t = a] = P(a, b)$$

Marginally, $\{X_t\}$ and $\{Y_t\}$ are both chain *P*
$\{(X_t, Y_t)\}_{t \ge 0} \sim \omega$ is a pair of processes such that

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[X_{t+1} = b \mid X_t = a] = P(a, b)$$

 $\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[Y_{t+1} = b \mid X_t = a] = P(a, b)$

Marginally, $\{X_t\}$ and $\{Y_t\}$ are both chain *P*

 $\forall t \ge 0, X_t = Y_t \implies X_{t'} = Y_{t'} \text{ for all } t' > t$

 $\{(X_t, Y_t)\}_{t \ge 0} \sim \omega$ is a pair of processes such that

$$\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[X_{t+1} = b \mid X_t = a] = P(a, b)$$

 $\forall a, b \in \Omega, \operatorname{\mathbf{Pr}}[Y_{t+1} = b \mid X_t = a] = P(a, b)$

Marginally, $\{X_t\}$ and $\{Y_t\}$ are both chain *P*

 $\forall t \ge 0, X_t = Y_t \implies X_{t'} = Y_{t'} \text{ for all } t' > t$

Two chains coalesce once they meet

If a finite chain *P* is irreducible and aperiodic, then it has a unique stationary distribution π . Moreover, for any initial distribution μ , it holds that

$$\lim_{t\to\infty}\mu^T P^t = \pi^T$$

If a finite chain *P* is irreducible and aperiodic, then it has a unique stationary distribution π . Moreover, for any initial distribution μ , it holds that

$$\lim_{t\to\infty}\mu^T P^t = \pi^T$$

Consider two chains $\{X_t\}_{t\geq 0}$ and $\{Y_t\}_{t\geq 0}$

If a finite chain *P* is irreducible and aperiodic, then it has a unique stationary distribution π . Moreover, for any initial distribution μ , it holds that

$$\lim_{t\to\infty}\mu^T P^t = \pi^T$$

Consider two chains $\{X_t\}_{t\geq 0}$ and $\{Y_t\}_{t\geq 0}$

• $X_0 \sim \pi$, $Y_0 \sim \mu_0$ for arbitrary μ_0

If a finite chain *P* is irreducible and aperiodic, then it has a unique stationary distribution π . Moreover, for any initial distribution μ , it holds that

$$\lim_{t\to\infty}\mu^T P^t = \pi^T$$

Consider two chains $\{X_t\}_{t\geq 0}$ and $\{Y_t\}_{t\geq 0}$

• $X_0 \sim \pi$, $Y_0 \sim \mu_0$ for arbitrary μ_0

•A coupling where X_t and Y_t run independently

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

 $\mathbf{Pr}[X_t = Y_t] \ge \mathbf{Pr}[X_t = Y_t = z] = \mathbf{Pr}[X_t = z] \cdot \mathbf{Pr}[Y_t = z]$ $= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

 $\mathbf{Pr}[X_t = Y_t] \ge \mathbf{Pr}[X_t = Y_t = z] = \mathbf{Pr}[X_t = z] \cdot \mathbf{Pr}[Y_t = z]$ $= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$

 $\Pr[X_t \neq Y_t] \le 1 - \theta < 1$

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

$$\Pr[X_t = Y_t] \ge \Pr[X_t = Y_t = z] = \Pr[X_t = z] \cdot \Pr[Y_t = z]$$
$$= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$$

 $\Pr[X_t \neq Y_t] \le 1 - \theta < 1$

 $\mathbf{Pr}[X_{2t} \neq Y_{2t}] = \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t = Y_t] + \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t \neq Y_t]$ $= \mathbf{Pr}[X_{2t} \neq Y_{2t} \mid X_t \neq Y_t] \cdot \mathbf{Pr}[X_t \neq Y_t]$ $\leq (1 - \theta)^2$

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

$$\Pr[X_t = Y_t] \ge \Pr[X_t = Y_t = z] = \Pr[X_t = z] \cdot \Pr[Y_t = z]$$
$$= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$$

 $\Pr[X_t \neq Y_t] \le 1 - \theta < 1$

 $\mathbf{Pr}[X_{2t} \neq Y_{2t}] = \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t = Y_t] + \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t \neq Y_t]$ $= \mathbf{Pr}[X_{2t} \neq Y_{2t} \mid X_t \neq Y_t] \cdot \mathbf{Pr}[X_t \neq Y_t]$ $\leq (1 - \theta)^2$

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

$$\mathbf{Pr}[X_t = Y_t] \ge \mathbf{Pr}[X_t = Y_t = z] = \mathbf{Pr}[X_t = z] \cdot \mathbf{Pr}[Y_t = z]$$
$$= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$$

 $\Pr[X_t \neq Y_t] \le 1 - \theta < 1$

 $\mathbf{Pr}[X_{2t} \neq Y_{2t}] = \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t = Y_t] + \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t \neq Y_t]$ $= \mathbf{Pr}[X_{2t} \neq Y_{2t} \mid X_t \neq Y_t] \cdot \mathbf{Pr}[X_t \neq Y_t]$ $\leq (1 - \theta)^2$

 $\Pr[X_{kt} \neq Y_{kt}] \le (1 - \theta)^k$

Then for any $z \in \Omega$, there exists some $\theta > 0$ s.t.

$$\mathbf{Pr}[X_t = Y_t] \ge \mathbf{Pr}[X_t = Y_t = z] = \mathbf{Pr}[X_t = z] \cdot \mathbf{Pr}[Y_t = z]$$
$$= \pi(z) \cdot P^t(Y_0, z) \ge \theta > 0$$

 $\Pr[X_t \neq Y_t] \le 1 - \theta < 1$

 $\mathbf{Pr}[X_{2t} \neq Y_{2t}] = \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t = Y_t] + \mathbf{Pr}[X_{2t} \neq Y_{2t} \land X_t \neq Y_t]$ $= \mathbf{Pr}[X_{2t} \neq Y_{2t} \mid X_t \neq Y_t] \cdot \mathbf{Pr}[X_t \neq Y_t]$ $\leq (1 - \theta)^2$

$$\lim_{n \to \infty} \Pr[X_n \neq Y_n] = 0$$

 $\Pr[X_{kt} \neq Y_{kt}] \le (1 - \theta)^k$

The mixing time $\tau_{mix}(\varepsilon)$ is the the first time *t* such that the total variation distance between X_t and π is at most ε , for any initial X_0

The mixing time $\tau_{mix}(\varepsilon)$ is the the first time *t* such that the total variation distance between X_t and π is at most ε , for any initial X_0

$$\tau_{\min}(\varepsilon) = \max_{\mu_0} \min_{t \ge 0} d_{\text{TV}}(\mu_0^T P^t, \pi) \le \varepsilon$$

The mixing time $\tau_{mix}(\varepsilon)$ is the the first time *t* such that the total variation distance between X_t and π is at most ε , for any initial X_0

$$\tau_{\min}(\varepsilon) = \max_{\mu_0} \min_{t \ge 0} d_{\text{TV}}(\mu_0^T P^t, \pi) \le \varepsilon$$

 $\tau_{\rm mix} = \tau_{\rm mix}(1/4)$

• $V = \{0,1\}^n$

- $V = \{0,1\}^n$
- $x \sim y$ iff $||x y||_1 = 1$

•
$$V = \{0,1\}^n$$

•
$$x \sim y$$
 iff $||x - y||_1 = 1$

Lazy walk on *G* Standing at $x \in \{0,1\}^n$ • with prob. $\frac{1}{2}$, do nothing • otherwise, choose $i \in [n]$ u.a.r and flip x(i)

- choose $i \in [n]$ and $b \in \{0,1\}$ u.a.r.
- change $x(i) \leftarrow b$

• choose $i \in [n]$ and $b \in \{0,1\}$ u.a.r.

• change
$$x(i) \leftarrow b$$

Let X_t and Y_t be two walks

• choose $i \in [n]$ and $b \in \{0,1\}$ u.a.r.

• change
$$x(i) \leftarrow b$$

Let X_t and Y_t be two walks

We couple them by choosing the same *i* and *b*

Coupon Collector!

Coupon Collector!

If $t \ge n \log n + cn$, then $\Pr[X_t \ne Y_t] \le e^{-c}$

Coupon Collector!

If $t \ge n \log n + cn$, then $\Pr[X_t \ne Y_t] \le e^{-c}$

Coupling lemma implies that

Coupon Collector!

If $t \ge n \log n + cn$, then $\Pr[X_t \ne Y_t] \le e^{-c}$

Coupling lemma implies that

 $\tau_{\min}(\varepsilon) \le n \log n + n \log \varepsilon^{-1}$

Another Random Walk
Another Random Walk

Lazy walk on *G* Standing at $x \in \{0,1\}^n$ • with prob. $\frac{1}{n+1}$, do nothing • otherwise, choose $i \in [n]$ u.a.r and flip x(i)

Another Random Walk

Lazy walk on *G* Standing at $x \in \{0,1\}^n$ • with prob. $\frac{1}{n+1}$, do nothing • otherwise, choose $i \in [n]$ u.a.r and flip x(i)

A coupling argument implies $\tau_{\min} \le \frac{1}{2} n \log n + O(n)$

Recall that we say a Markov chain *P* is reversible with respect to π if

Recall that we say a Markov chain P is reversible with respect to π if

 $\forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x)$

Recall that we say a Markov chain *P* is reversible with respect to π if

$$\forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x)$$

Then π is a stationary distribution of P

Recall that we say a Markov chain *P* is reversible with respect to π if

$$\forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x)$$

Then π is a stationary distribution of P

We showed that spectral decomposition is a powerful tool to analyze reversible chains

$$\lambda_{\star} := \max_{1 \le i \le n-1} |\lambda_i|$$

 $\lambda_{\star} := \max_{1 \le i \le n-1} |\lambda_i|$ $\tau_{\text{rel}} := \frac{1}{1 - \lambda_{\star}}$

$$\lambda_{\star} := \max_{1 \le i \le n-1} |\lambda_i|$$
$$\tau_{\text{rel}} := \frac{1}{1 - \lambda_{\star}}$$

For reversible, irreducible, aperiodic chains:

$$\lambda_{\star} := \max_{1 \le i \le n-1} |\lambda_i|$$
$$\tau_{\text{rel}} := \frac{1}{1 - \lambda_{\star}}$$

For reversible, irreducible, aperiodic chains:

$$(\tau_{\text{rel}} - 1)\log\left(\frac{1}{2\varepsilon}\right) \le \tau_{\text{mix}}(\varepsilon) \le \tau_{\text{rel}}\log\left(\frac{1}{\varepsilon\pi_{\text{min}}}\right)$$

For reversible, irreducible, aperiodic chains:

$$(\tau_{\rm rel} - 1)\log\left(\frac{1}{2\varepsilon}\right) \le \tau_{\rm mix}(\varepsilon) \le \tau_{\rm rel}\log\left(\frac{1}{\varepsilon\pi_{\rm min}}\right)$$