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Total Variation Distance

Let 1 and v be two distributions on £2

Their total variation distance is

1
dry(psv) = = > [ 1(x) = v(x) | = max u(4) - v(A)
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Coupling

Let 1 and v be two distributions on £2

A coupling of u and v is a joint distribution @ on
(2 X € such that:

Vx e Q, ulkx) = Z w(x,y)
yel

Vye Q, uv(x)= Z w(x,y)
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Coupling Lemma

Let w be a coupling of i and v

L(X,Y)Na)=>'X~,ua1r1dYrvl/m

Then Pr [X#Y]2>dy(u,v)
(X,Y)~w

Moreover, there exists @™ such that

Pr[X# Y] =dpy(uv)
(X,Y)~w*



Proof of Coupling Lemma

For finite €2, designing a coupling is equivalent to
filling a €2 X €2 matrix so that the marginals are correct

Q=1{12), u=(1/2,1/2),v=(1/32/3)
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Coupling of Markov Chains

Consider two copies of the chain P:
e The initial distribution is y, and
oy =y, P'and v =y, P’
A coupling of the two chains is joint distribution

w of {}4;} >0 and {1} satisfying the following
conditions



(X5 Y) } >0 ~ o is a pair of processes such that
Va,b € Q,Pr[X,. ., =b| X, =a] = P(a, b)

Va,b € Q,PrlY, ., =b | X, = a] = P(a, b)

Marginally, {X,} and {Y,} are both chain P

Vi>20,X, =Y, = X, =Y, forall > 1

‘"Two chains coalesce once they meet




Fundamental Theorem via Coupling
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If a finite chain P is irreducible and aperiodic, then it has a
unique stationary distribution z. Moreover, for any initial
| distribution , it holds that
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Consider two chains {X,} ., and {Y,} ¢

Xy~ 7, Yy ~ Uy for arbitrary

* A coupling where X, and Y, run independently
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irreducible + aperiodic = 3t,Vx,y, P'(x,y) > @

e —— e e

Then for any z € €2, there exists some 8 > 0 s.t.

PriX. =Y >PriX,=Y,=z] =Pr|X, =z] - PrlY, = 7]
= 7n(z) - P'(Yy,2) 260 >0

PriX, #Y]<1-0<1
Pr(X, # Y, = Pr(X,, £ Y, AX, = Y| + Pr[X,, # Y, AX # Y]

=Pr(X,, # Y, | X # Y] -Pr[X # Y]
<(1-6)
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| Ilm Pr(X #Y ]=0

Pr(X,, # Y] < (1-0) —_—




Mixing Time

The mixing time 7. (&) is the the first time ¢
such that the total variation distance between

X, and & is at most ¢, for any initial X,

Tix(€) = max min dpy(uy P, 7) < €
Ho 120

(1/4)
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Random Walk on Hyper Cube

e V=1{0,1)"

ox ~yiff [[x—y|[, =1

Lazy walk On@ ——
Standing at x € {0,1}" :
|

: |

|

|

| « with prob. > do nothing
|

I e otherwise, choose i € [n] u.a.r and flip x(7) |




The chain is equivalent to
® choosei € [n]and b € {0,1} u.a.r.

® change x(i) « b

Let X, and Y, be two walks

We couple them by choosing the same i and b



What is the probability that X, # Y,?

Coupon Collector!
Ift>nlogn+cn,thenPriX, #Y,] <e™*

Coupling lemma implies that

t . (e) <nlogn+nloge™!



Another Random Walk

Lazy walk on G

—

Standing at x € {0,1}"

|

1
« With prob. , do nothing |
n+1 |
|

e otherwise, choose i € [n] u.a.r and flip x(7)

e L e

A coupling argument implies 7;, < En logn 4+ O(n)



Reversible Chain

Recall that we say a Markov chain P is reversible
with respect to x if

Vx,y € Q, a(x)P(x,y) = n(y)P(y,x)

Then r is a stationary distribution of P

We showed that spectral decomposition is a
powerful tool to analyze reversible chains



Relaxation Time

n
i=1

o1, =1
n L] —
e A; > —1and A, = — 1 if and only if P is bipartite A] — I I laX | A/. ‘
P = E MvyviD, . * l

.1 = 1 if and only P is reducible .
i=1 1<i<n—1

If P is reducible (4,_; < 1) and aperiodic (4; > — 1)
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For reversible, irreducible, aperiodic chains:
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