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Random Walk on a Graph

P = [pij]1≤i,j≤n =
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pij = Pr[Xt+1 = j ∣ Xt = i]

Stationary distribution : π πTP = πT

∀t ≥ 0, μT
t = μT
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Fundamental Theorem of 
Markov Chains

We study a few basic questions regarding a chain:

• Does a stationary distribution always exist?

• If so, is the stationary distribution unique?

• If so, does any initial distribution converge to it? 



Existence of Stationary 
Distribution

Yes, any Markov chain has a stationary distribution

Perron-Frobenius

Any positive matrix  matrix 
 has a positive real eigenvalue 
 with . Moreover, its 

eigenvector is positive.

n × n
A
λ ρ(A) = λ

λ(PT) = λ(P) = 1

The positive 
eigenvector is π



Uniqueness and Convergence

P = [1 − p p
q 1 − q]

 is a stationary dist. of π = ( q
p + q

,
p

p + q )
T

P

Start from an arbitrary μ0 = (μ(1), μ(2))T

Compute ∥μT
0 Pt − πT∥

1 2

1 − p p 1 − q

q



Δt = |μt(1) − π(1) |

Δt+1 = μt+1(1) −
q

p + q

= μt(1 − p) + (1 − μt(1))q −
q

p + q

= (1 − p − q) μt(1) −
q

p + q
= (1 − p − q) ⋅ Δt

Since , there are two ways to prohibit  
:  or 

p, q ∈ [0,1]
Δt → 0 p = q = 1 p = q = 0



               p = q = 0

1 2

1 1 The graph is disconnected

The chain is called reducible

In this case, the stationary distribution is not unique

Chain = convex combination of small chains

∀t, Δt = Δ0

Stationary distribution=convex combination of “small” distributions



               p = q = 1

1 2

1

1

∀t, Δt = − Δt−1

The graph is bipartite

The chain is called periodic

In this case, not all initial distribution converges to 
the stationary distribution

Formally, ∃v, gcdC∈Cv
|C | > 1



Fundamental Theorem of 
Markov Chains

If a finite chain  is irreducible and aperiodic, then 
it has a unique stationary distribution . Moreover, 
for any initial distribution , it holds that 

P
π

μ

lim
t→∞

μTPt = πT

(Show on board, see the note for details)



Reversible Chains
We study a special family of Markov chains called 
reversible chains

Their transition graphs are undirected
x → y ⟺ y → x

A chain  and a distribution  satisfies detailed 
balance condition:

P π

∀x, y ∈ V, π(x) ⋅ P(x, y) = π(y) ⋅ P(y, x)

Then  is a stationary distribution of π P



We study reversible chains because

• They are quite general. For any , one can define 
an reversible  whose stationary distribution is 

π
P π

Helpful for Sampling

• We have powerful tools (spectral method) to 
analyze reversible chains



Spectral Decomposition Theorem

An  symmetric matrix  has  real eigenvalues 
 with corresponding eigenvectors  

which are orthogonal. Moreover, it holds that

n × n A n
λ1, …, λn v1, …, vn

A = VΛVT

where  and V = [v1, …, vn] Λ = diag(λ1, …, λn)

Equivalently, A =
n

∑
i=1

λivivT
i



Spectral Decomposition 
Theorem for Reversible Chains

 is a stationary distribution of a reversible chain π P

Define an inner product  on :⟨ ⋅ , ⋅ ⟩π ℝn

⟨x, y⟩π =
n

∑
i=1

π(i) ⋅ x(i) ⋅ y(i) = xTDπy,

where Dπ = diag(π1, …, πn)

Consider the Hilbert space  endowed with ℝn ⟨ ⋅ , ⋅ ⟩π



Let  be reversible with respect to . It has 
 real eigenvalues  with corresponding 

eigenvectors  which are orthogonal in 
. Moreover

P ∈ ℝn×n π
n λ1, …, λn

v1, …, vn
(ℝn, ⟨ ⋅ , ⟩π)

P =
n

∑
i=1

λivivT
i Dπ

Proof. Reduce to the 
symmetric case.



Properties of Eigenvalues

 is a stationary distribution of a reversible chain π P

The eigenvalues of  are P λ1 ≤ λ2… ≤ λn

• λn = 1

•  and  if and only if  is bipartiteλ1 ≥ − 1 λ1 = − 1 P

•  if and only if  is reducibleλn−1 = 1 P

Proof next week!



P =
n

∑
i=1

λivivT
i Dπ

Pt =
n

∑
i=1

λt
i vivT

i Dπ

If  is irreducible ( ) and aperiodic ( )P λn−1 < 1 λ1 > − 1

lim
t→∞

Pt = 11TDπ =

πT

πT

⋮
πT


