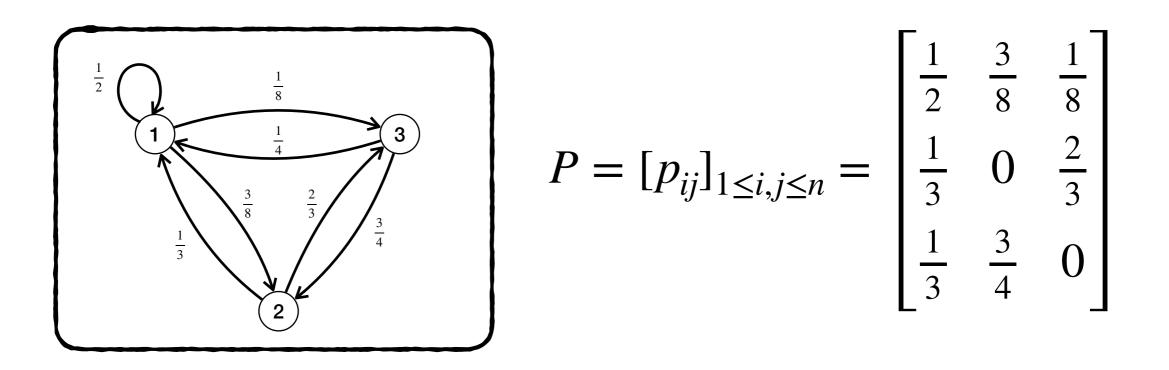
Advanced Algorithms (XII)

Shanghai Jiao Tong University

Chihao Zhang

May 25, 2020

Random Walk on a Graph



$$p_{ij} = \mathbf{Pr}[X_{t+1} = j \mid X_t = i] \quad \forall t \ge 0, \ \mu_t^T = \mu_0^T P^t$$

Stationary distribution π : $\pi^T P = \pi^T$

Fundamental Theorem of Markov Chains

We study a few basic questions regarding a chain:

- Does a stationary distribution always exist?
- If so, is the stationary distribution unique?
- If so, does any initial distribution converge to it?

Existence of Stationary Distribution

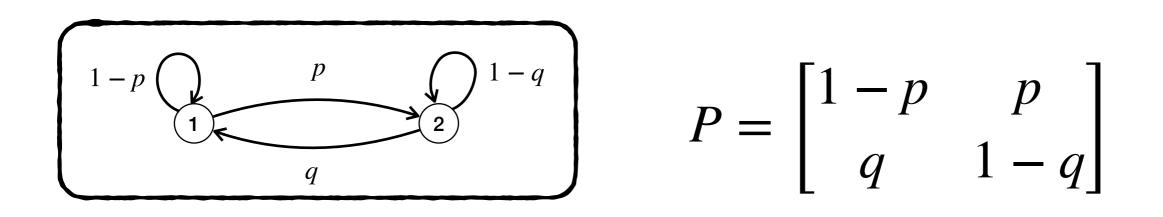
Yes, any Markov chain has a stationary distribution

Any positive matrix $n \times n$ matrix *A* has a positive real eigenvalue λ with $\rho(A) = \lambda$. Moreover, its eigenvector is positive.

Perron-Frobenius

$$\lambda(P^T) = \lambda(P) = 1$$

Uniqueness and Convergence



$$\pi = \left(\frac{q}{p+q}, \frac{p}{p+q}\right)^T$$
 is a stationary dist. of *P*

Start from an arbitrary $\mu_0 = (\mu(1), \mu(2))^T$

Compute
$$\|\mu_0^T P^t - \pi^T\|$$

$$\begin{split} \Delta_t &= |\mu_t(1) - \pi(1)| \\ \Delta_{t+1} &= \left| \mu_{t+1}(1) - \frac{q}{p+q} \right| \\ &= \left| \mu_t(1-p) + (1-\mu_t(1))q - \frac{q}{p+q} \right| \\ &= (1-p-q) \left| \mu_t(1) - \frac{q}{p+q} \right| = (1-p-q) \cdot \Delta_t \end{split}$$

Since $p, q \in [0,1]$, there are two ways to prohibit $\Delta_t \rightarrow 0$: p = q = 1 or p = q = 0

p = q = 0



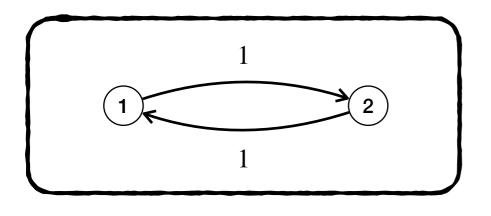
The graph is disconnected The chain is called reducible

In this case, the stationary distribution is not unique

Chain = convex combination of small chains

Stationary distribution = convex combination of "small" distributions

p = q = 1



The graph is bipartite The chain is called periodic

$$\forall t, \, \Delta_t = - \, \Delta_{t-1}$$

Formally, $\exists v, \gcd_{C \in C_v} |C| > 1$

In this case, not all initial distribution converges to the stationary distribution

Fundamental Theorem of Markov Chains

If a finite chain *P* is irreducible and aperiodic, then it has a unique stationary distribution π . Moreover, for any initial distribution μ , it holds that

$$\lim_{t \to \infty} \mu^T P^t = \pi^T$$

(Show on board, see the note for details)

Reversible Chains

We study a special family of Markov chains called reversible chains

Their transition graphs are **undirected**

$$x \to y \iff y \to x$$

A chain *P* and a distribution π satisfies *detailed balance condition*:

$$\forall x, y \in V, \, \pi(x) \cdot P(x, y) = \pi(y) \cdot P(y, x)$$

Then π is a stationary distribution of P

We study reversible chains because

• They are quite general. For any π , one can define an reversible *P* whose stationary distribution is π

Helpful for Sampling

• We have powerful tools (spectral method) to analyze reversible chains

Spectral Decomposition Theorem

An $n \times n$ symmetric matrix A has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are orthogonal. Moreover, it holds that

$$A = V\Lambda V^T$$

where $V = [\mathbf{v}_1, ..., \mathbf{v}_n]$ and $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$

Equivalently,
$$A = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

Spectral Decomposition Theorem for Reversible Chains

 π is a stationary distribution of a reversible chain P

Define an inner product $\langle \cdot, \cdot \rangle_{\pi}$ on \mathbb{R}^{n} :

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\pi} = \sum_{i=1}^{n} \pi(i) \cdot \mathbf{x}(i) \cdot \mathbf{y}(i) = \mathbf{x}^{T} D_{\pi} \mathbf{y},$$

where $D_{\pi} = \text{diag}(\pi_{1}, \dots, \pi_{n})$

Consider the Hilbert space \mathbb{R}^n endowed with $\langle \cdot, \cdot \rangle_{\pi}$

Let $P \in \mathbb{R}^{n \times n}$ be reversible with respect to π . It has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are orthogonal in $(\mathbb{R}^n, \langle \cdot, \rangle_{\pi})$. Moreover

$$P = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T D_{\pi}$$

Proof. Reduce to the symmetric case.

Spectral Decomposition Theorem

An $n \times n$ symmetric matrix A has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are orthogonal. Moreover, it holds that

 $A = V \Lambda V^T$

where $V = [\mathbf{v}_1, ..., \mathbf{v}_n]$ and $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$

Equivalently,
$$A = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

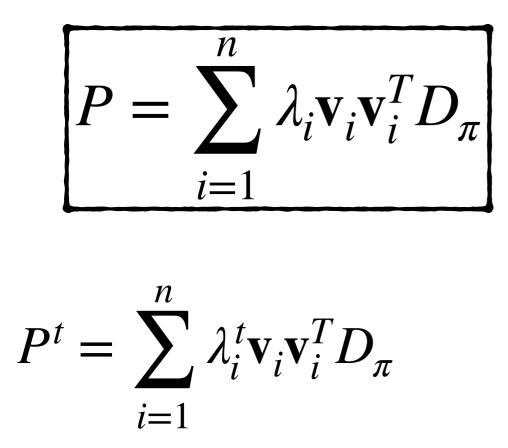
Properties of Eigenvalues

 π is a stationary distribution of a reversible chain P

The eigenvalues of *P* are
$$\lambda_1 \leq \lambda_2 \dots \leq \lambda_n$$

•
$$\lambda_n = 1$$
 Proof next week!

- $\lambda_1 \ge -1$ and $\lambda_1 = -1$ if and only if *P* is bipartite
- $\lambda_{n-1} = 1$ if and only if *P* is reducible



λ_n = 1
λ₁ ≥ − 1 and λ₁ = − 1 if and only if *P* is bipartite
λ_{n−1} = 1 if and only if *P* is reducible

If *P* is irreducible ($\lambda_{n-1} < 1$) and aperiodic ($\lambda_1 > -1$)

$$\lim_{t \to \infty} P^t = \mathbf{1} \mathbf{1}^T D_{\pi} = \begin{bmatrix} \pi^T \\ \pi^T \\ \vdots \\ \pi^T \end{bmatrix}$$