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Xi ∈ [−1,1] × [−1,1]

Zn =
n

∑
i=1

1[∥Xi∥ ≤ 1]
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If , we have an  approximation 

of  with probability at least 

n ≥
12
ε2π

log
2
δ

1 ± ε

π 1 − δ
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The method is often called rejection sampling

It is useful to estimate the size of some good sets 
in a large set 

The number of samples is 

proportional to  
|A |
|B |A

B
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Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

 may contain only polynomial many solutionsφ

The Monte Carlo method using rejection sampling 
is slow!

B = satisfying assignments

A = all assignments
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For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

B = ⋃
1≤i≤m

Si

A =
⋅

⋃
1≤i≤m

Si

(disjoint union)
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We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

x

z

y

w

x = 𝚝𝚛𝚞𝚎, y = 𝚏𝚊𝚕𝚜𝚎

z = 𝚏𝚊𝚕𝚜𝚎, w = 𝚝𝚛𝚞𝚎 x

z

y

w

#φ = # of independent sets
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Unfortunately, this is not correct.

x
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Partial Rejection Sampling

Guo, Jerrum and Liu (JACM, 2019) proposed the 
following fix:

“Resample violated vertices and their neighbors”

We will prove the correctness and analyze its 
efficiency next week
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Consider independent sets again

, G = (V, E) E = {e1, e2, …, em}

We want to estimate , the number of i.s. in I(G) G
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| I(G) | = | I(G0) | =
| I(G0) |
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⋅
| I(G1) |
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…
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⋅ | I(Gm) |

2n
| |

A = I(Gi)

B = I(Gi+1)

 can’t be too large!
|A |
|B |

I(Gi)
I(Gi+1)

≤ 2
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On the other hand, one can consecutively sample 
each vertex as long as  is knownPr[v ∈ I]

The value can be obtained via a counting oracle

The above two reductions require the system to satisfy 
“self-reducible” property


