Advanced Algorithms (X)

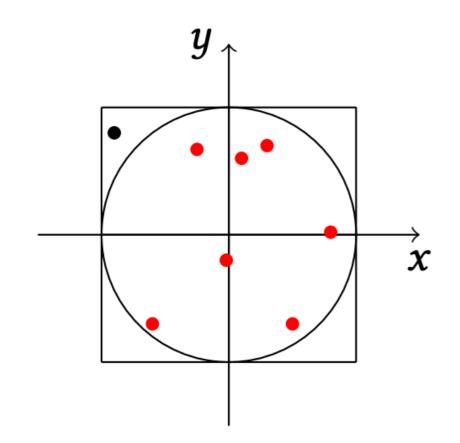
Shanghai Jiao Tong University

Chihao Zhang

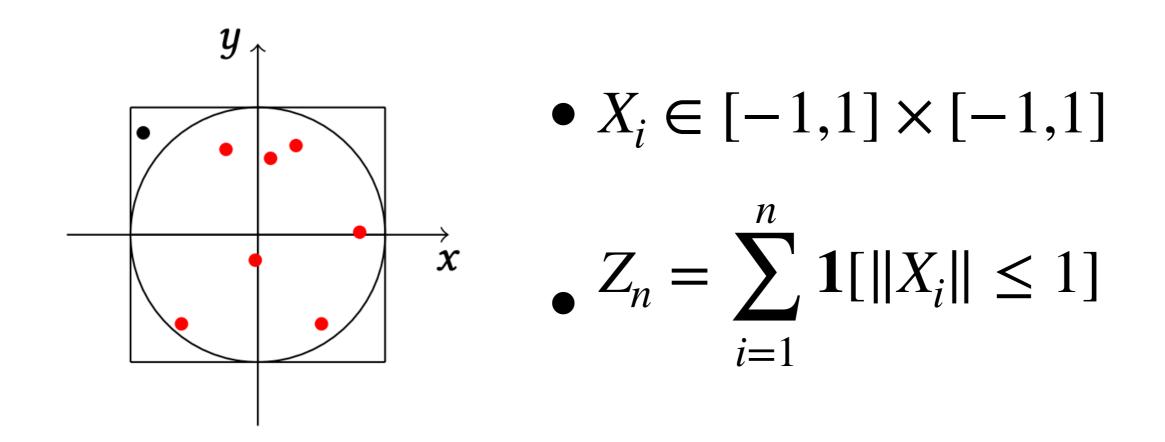
May 11, 2020

One can design a Monte-Carlo algorithm to estimate the value of π

One can design a Monte-Carlo algorithm to estimate the value of π



One can design a Monte-Carlo algorithm to estimate the value of π



$$X_i \sim \text{Ber}\left(\frac{\pi}{4}\right), \quad \mathbf{E}[Z_n] = \frac{\pi}{4} \cdot n$$

$$X_i \sim \text{Ber}\left(\frac{\pi}{4}\right), \quad \mathbf{E}[Z_n] = \frac{\pi}{4} \cdot n$$

Therefore, by Chernoff bound

$$X_i \sim \operatorname{Ber}\left(\frac{\pi}{4}\right), \quad \operatorname{E}[Z_n] = \frac{\pi}{4} \cdot n$$

Therefore, by Chernoff bound

$$\Pr\left[\left|Z_n - \frac{\pi}{4} \cdot n\right| \ge \varepsilon \cdot \frac{\pi}{4} \cdot n\right] \le 2 \exp\left(-\frac{\varepsilon^2 \pi n}{12}\right)$$

$$X_i \sim \operatorname{Ber}\left(\frac{\pi}{4}\right), \quad \operatorname{E}[Z_n] = \frac{\pi}{4} \cdot n$$

Therefore, by Chernoff bound

$$\Pr\left[\left|Z_n - \frac{\pi}{4} \cdot n\right| \ge \varepsilon \cdot \frac{\pi}{4} \cdot n\right] \le 2 \exp\left(-\frac{\varepsilon^2 \pi n}{12}\right)$$

If $n \ge \frac{12}{\varepsilon^2 \pi} \log \frac{2}{\delta}$, we have an $1 \pm \varepsilon$ approximation of π with probability at least $1 - \delta$

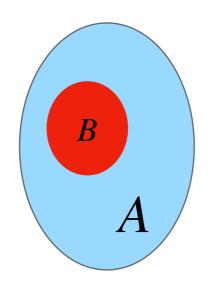
The method is often called rejection sampling

The method is often called rejection sampling

It is useful to estimate the size of some good sets in a large set

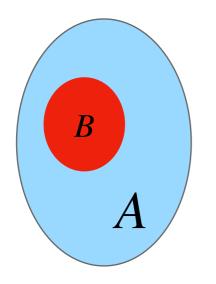
The method is often called rejection sampling

It is useful to estimate the size of some good sets in a large set



The method is often called rejection sampling

It is useful to estimate the size of some good sets in a large set

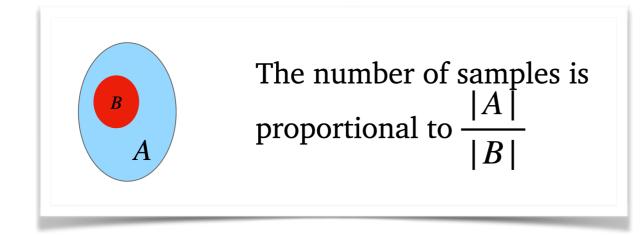


The number of samples is proportional to $\frac{|A|}{|B|}$

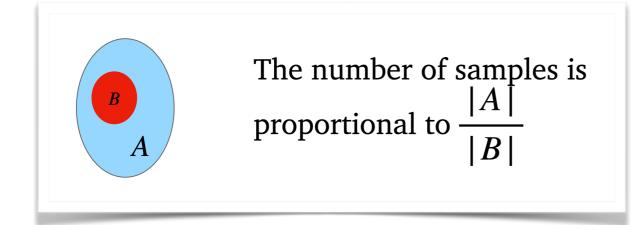
A DNF formula $\varphi = C_1 \lor C_2 \lor \cdots \lor C_m$,

A DNF formula $\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge^{\ell_i} x_{ij}$ *j*=1

A DNF formula $\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge^{\ell_i} x_{ij}$

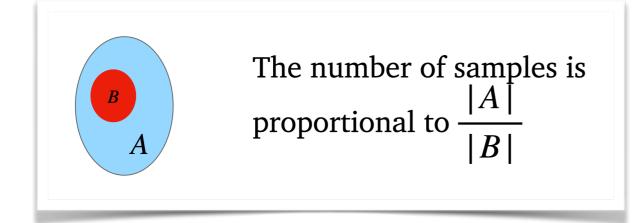


A DNF formula $\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge^{\ell_i} x_{ij}$ j=1



B = satisfying assignments

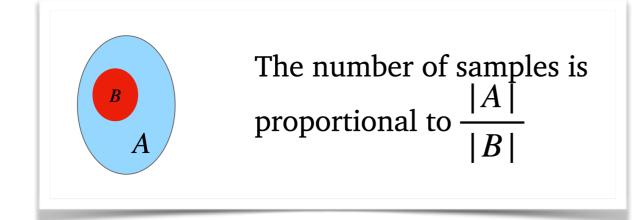
A DNF formula
$$\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge_{j=1}^{\ell_i} x_{ij}$$



B = satisfying assignments

$$A = all assignments$$

A DNF formula
$$\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge_{j=1}^{\ell_i} x_{ij}$$

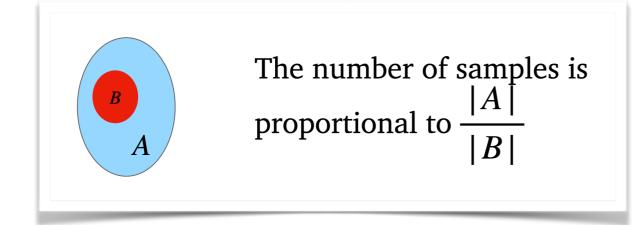


B = satisfying assignments

$$A = all assignments$$

 φ may contain only polynomial many solutions

A DNF formula
$$\varphi = C_1 \lor C_2 \lor \cdots \lor C_m, \ C_i = \bigwedge_{j=1}^{\ell_i} x_{ij}$$



B = satisfying assignments

$$A = all assignments$$

 φ may contain only polynomial many solutions

The Monte Carlo method using rejection sampling is slow!

 $S_i :=$ the set of assignments satisfying C_i

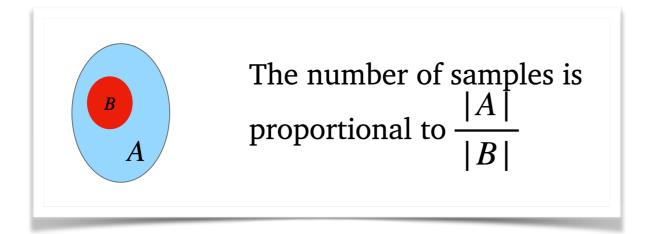
 $S_i :=$ the set of assignments satisfying C_i

We want to estimate
$$\bigcup_{1 \le i \le m} S_i$$

 $S_i :=$ the set of assignments satisfying C_i

We want to estimate

$$\bigcup_{1 \le i \le m} S_i$$



 $S_i :=$ the set of assignments satisfying C_i

We want to estimate

$$\bigcup_{1 \le i \le m} S_i$$

The number of samples is
proportional to
$$\frac{|A|}{|B|}$$

$$B = \bigcup_{1 \le i \le m} S_i$$

 $S_i :=$ the set of assignments satisfying C_i

We want to estimate

$$\bigcup_{1 \le i \le m} S_i$$

The number of samples is
proportional to
$$\frac{|A|}{|B|}$$

$$B = \bigcup_{1 \le i \le m} S_i$$
$$\cdot$$
$$A = \bigcup_{i \le m} S_i$$

$$= \bigcup_{1 \le i \le m} S_i$$

 $S_i :=$ the set of assignments satisfying C_i

We want to estimate

$$\bigcup_{1 \le i \le m} S_i$$

The number of samples is
proportional to
$$\frac{|A|}{|B|}$$

$$B = \bigcup_{1 < i < m} S_i$$

$$A = \bigcup S_i$$

 $1 \le i \le m$ (disjoint union)

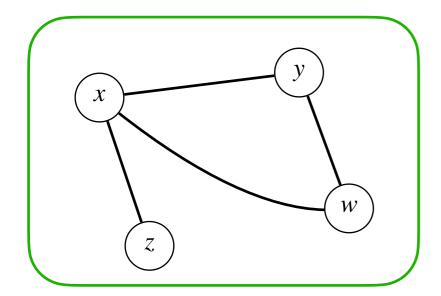
We consider a very special case: monotone 2-CNF

We consider a very special case: monotone 2-CNF

 $\varphi = (x \lor y) \land (x \lor z) \land (x \lor w) \land (y \lor w)$

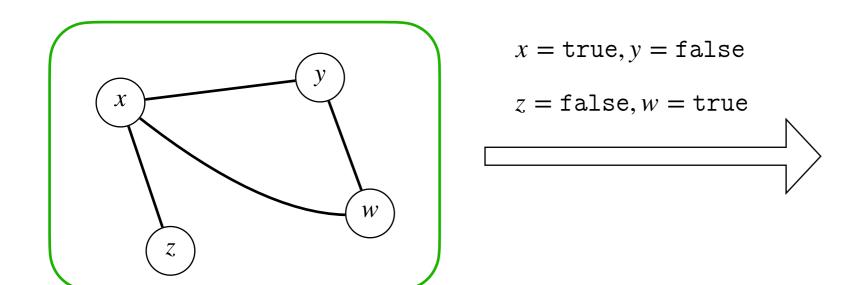
We consider a very special case: monotone 2-CNF

 $\varphi = (x \lor y) \land (x \lor z) \land (x \lor w) \land (y \lor w)$



We consider a very special case: monotone 2-CNF

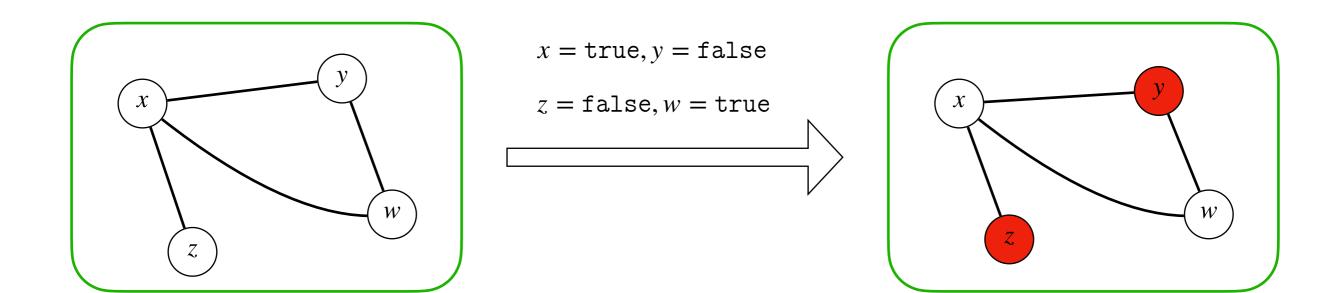
$$\varphi = (x \lor y) \land (x \lor z) \land (x \lor w) \land (y \lor w)$$



How about CNF?

We consider a very special case: monotone 2-CNF

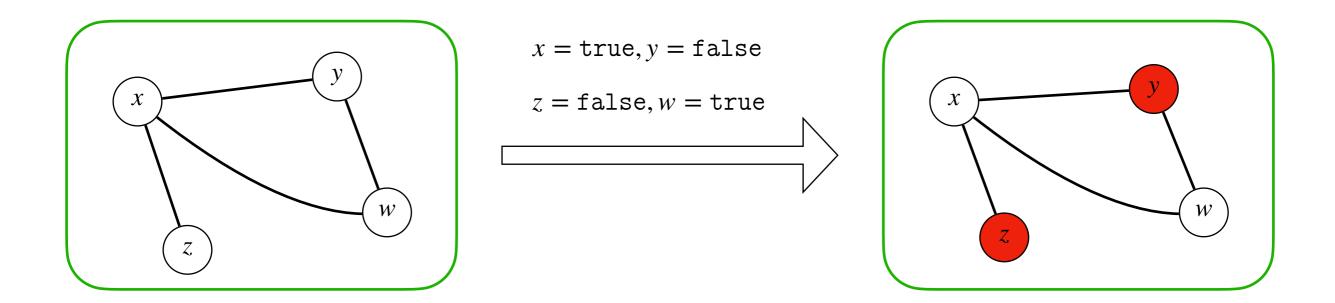
 $\varphi = (x \lor y) \land (x \lor z) \land (x \lor w) \land (y \lor w)$



How about CNF?

We consider a very special case: monotone 2-CNF

 $\varphi = (x \lor y) \land (x \lor z) \land (x \lor w) \land (y \lor w)$



 $#\varphi = #$ of independent sets

Rejection sampling is correct but inefficient

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges...

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges...

Unfortunately, this is not correct.

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges...

Unfortunately, this is not correct.

Think about

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges...

Unfortunately, this is not correct.

Guo, Jerrum and Liu (JACM, 2019) proposed the following fix:

Guo, Jerrum and Liu (JACM, 2019) proposed the following fix:

"Resample violated vertices and their neighbors"

Guo, Jerrum and Liu (JACM, 2019) proposed the following fix:

"Resample violated vertices and their neighbors"

We will prove the correctness and analyze its efficiency next week

From Sampling to Counting

Consider independent sets again

Consider independent sets again

$$G = (V, E), E = \{e_1, e_2, \dots, e_m\}$$

Consider independent sets again

$$G = (V, E), E = \{e_1, e_2, \dots, e_m\}$$

We want to estimate I(G), the number of i.s. in G

Define $G_0 = G, G_i = G_{i-1} - e_i$

Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \dots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$

Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \dots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$

Define $G_0 = G, G_i = G_{i-1} - e_i$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \dots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$

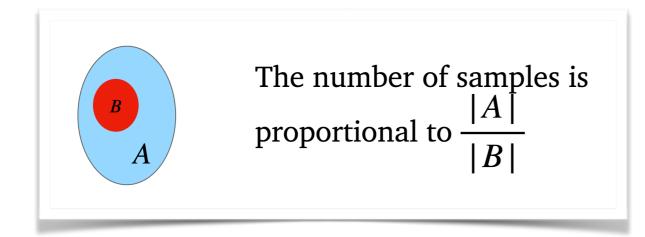
Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot \frac{|I(G_m)|}{|I(G_m)|}$$

Define $G_0 = G, G_i = G_{i-1} - e_i$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$

 2^{n}

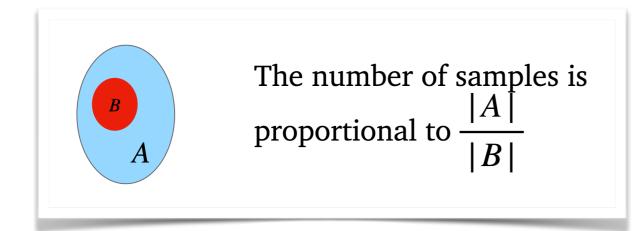


Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$

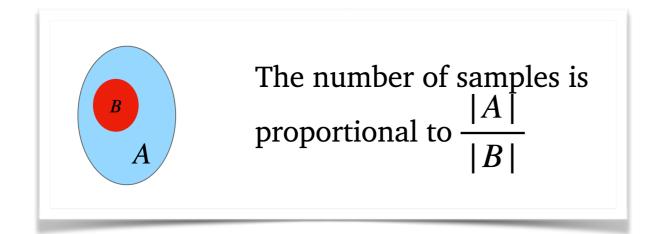
 2^n

 $A = I(G_i)$



Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$



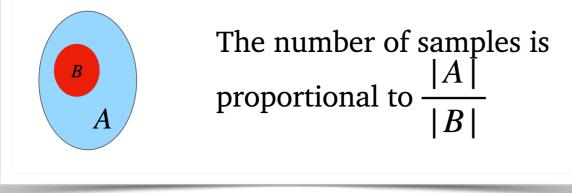
 $A = I(G_i)$

$$B = I(G_{i+1})$$

 2^n

Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot ||I(G_m)||$$
$$||$$
$$2^n$$



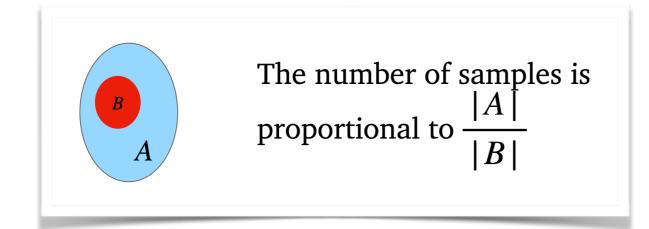
 $A = I(G_i)$

$$B = I(G_{i+1})$$

$$\frac{|A|}{|B|}$$
 can't be too large!

Define
$$G_0 = G, G_i = G_{i-1} - e_i$$

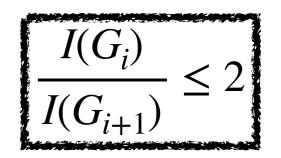
$$|I(G)| = |I(G_0)| = \frac{|I(G_0)|}{|I(G_1)|} \cdot \frac{|I(G_1)|}{|I(G_2)|} \cdots \frac{|I(G_{m-1})|}{|I(G_m)|} \cdot |I(G_m)|$$



 $A = I(G_i)$

$$B = I(G_{i+1})$$

$$\frac{|A|}{|B|}$$
 can't be too large!



 2^n

From Counting to Sampling

On the other hand, one can consecutively sample each vertex as long as $Pr[v \in I]$ is known

On the other hand, one can consecutively sample each vertex as long as $Pr[v \in I]$ is known

The value can be obtained via a counting oracle

On the other hand, one can consecutively sample each vertex as long as $Pr[v \in I]$ is known

The value can be obtained via a counting oracle

The above two reductions require the system to satisfy "self-reducible" property