
Advanced Algorithms (X)

Shanghai Jiao Tong University

Chihao Zhang

May 11, 2020

Estimate π

Estimate π
One can design a Monte-Carlo algorithm to
estimate the value of π

Estimate π
One can design a Monte-Carlo algorithm to
estimate the value of π

Estimate π
One can design a Monte-Carlo algorithm to
estimate the value of π

•

•

Xi ∈ [−1,1] × [−1,1]

Zn =
n

∑
i=1

1[∥Xi∥ ≤ 1]

Xi ∼ Ber (π
4), E[Zn] =

π
4

⋅ n

Xi ∼ Ber (π
4), E[Zn] =

π
4

⋅ n

Therefore, by Chernoff bound

Xi ∼ Ber (π
4), E[Zn] =

π
4

⋅ n

Therefore, by Chernoff bound

Pr [Zn −
π
4

⋅ n ≥ ε ⋅
π
4

⋅ n] ≤ 2 exp (−
ε2πn
12)

Xi ∼ Ber (π
4), E[Zn] =

π
4

⋅ n

Therefore, by Chernoff bound

Pr [Zn −
π
4

⋅ n ≥ ε ⋅
π
4

⋅ n] ≤ 2 exp (−
ε2πn
12)

If , we have an approximation

of with probability at least

n ≥
12
ε2π

log
2
δ

1 ± ε

π 1 − δ

Rejection Sampling

Rejection Sampling

The method is often called rejection sampling

Rejection Sampling

The method is often called rejection sampling

It is useful to estimate the size of some good sets
in a large set

Rejection Sampling

The method is often called rejection sampling

It is useful to estimate the size of some good sets
in a large set

A

B

Rejection Sampling

The method is often called rejection sampling

It is useful to estimate the size of some good sets
in a large set

The number of samples is

proportional to
|A |
|B |A

B

Counting DNF

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

B = satisfying assignments

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

B = satisfying assignments

A = all assignments

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

 may contain only polynomial many solutionsφ

B = satisfying assignments

A = all assignments

Counting DNF

A DNF formula ,φ = C1 ∨ C2 ∨ ⋯ ∨ Cm Ci =
ℓi

⋀
j=1

xij

 may contain only polynomial many solutionsφ

The Monte Carlo method using rejection sampling
is slow!

B = satisfying assignments

A = all assignments

For each clause , define the setCi

For each clause , define the setCi

Si := the set of assignments satisfying Ci

For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

B = ⋃
1≤i≤m

Si

For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

B = ⋃
1≤i≤m

Si

A =
⋅

⋃
1≤i≤m

Si

For each clause , define the setCi

Si := the set of assignments satisfying Ci

We want to estimate ⋃
1≤i≤m

Si

B = ⋃
1≤i≤m

Si

A =
⋅

⋃
1≤i≤m

Si

(disjoint union)

How about CNF?

How about CNF?

We consider a very special case: monotone 2-CNF

How about CNF?

We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

How about CNF?

We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

x

z

y

w

How about CNF?

We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

x

z

y

w

x = 𝚝𝚛𝚞𝚎, y = 𝚏𝚊𝚕𝚜𝚎

z = 𝚏𝚊𝚕𝚜𝚎, w = 𝚝𝚛𝚞𝚎

How about CNF?

We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

x

z

y

w

x = 𝚝𝚛𝚞𝚎, y = 𝚏𝚊𝚕𝚜𝚎

z = 𝚏𝚊𝚕𝚜𝚎, w = 𝚝𝚛𝚞𝚎 x

z

y

w

How about CNF?

We consider a very special case: monotone 2-CNF

φ = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ w) ∧ (y ∨ w)

x

z

y

w

x = 𝚝𝚛𝚞𝚎, y = 𝚏𝚊𝚕𝚜𝚎

z = 𝚏𝚊𝚕𝚜𝚎, w = 𝚝𝚛𝚞𝚎 x

z

y

w

#φ = # of independent sets

Sampling seems to be harder than DNF case…

Sampling seems to be harder than DNF case…

Rejection sampling is correct but inefficient

Sampling seems to be harder than DNF case…

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges…

Sampling seems to be harder than DNF case…

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges…

Unfortunately, this is not correct.

Sampling seems to be harder than DNF case…

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges…

Unfortunately, this is not correct.

Think about

Sampling seems to be harder than DNF case…

Rejection sampling is correct but inefficient

A natural idea is to resample those violated edges…

Unfortunately, this is not correct.

x

z y
Think about

Partial Rejection Sampling

Partial Rejection Sampling

Guo, Jerrum and Liu (JACM, 2019) proposed the
following fix:

Partial Rejection Sampling

Guo, Jerrum and Liu (JACM, 2019) proposed the
following fix:

“Resample violated vertices and their neighbors”

Partial Rejection Sampling

Guo, Jerrum and Liu (JACM, 2019) proposed the
following fix:

“Resample violated vertices and their neighbors”

We will prove the correctness and analyze its
efficiency next week

From Sampling to Counting

We will show that, in many cases, if one can sample
from a space, then he can also estimate the size of
the space

We will show that, in many cases, if one can sample
from a space, then he can also estimate the size of
the space

Consider independent sets again

We will show that, in many cases, if one can sample
from a space, then he can also estimate the size of
the space

Consider independent sets again

, G = (V, E) E = {e1, e2, …, em}

We will show that, in many cases, if one can sample
from a space, then he can also estimate the size of
the space

Consider independent sets again

, G = (V, E) E = {e1, e2, …, em}

We want to estimate , the number of i.s. in I(G) G

Define G0 = G, Gi = Gi−1 − ei

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

| |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

A = I(Gi)

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

A = I(Gi)

B = I(Gi+1)

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

A = I(Gi)

B = I(Gi+1)

 can’t be too large!
|A |
|B |

Define G0 = G, Gi = Gi−1 − ei

| I(G) | = | I(G0) | =
| I(G0) |
| I(G1) |

⋅
| I(G1) |
| I(G2) |

…
| I(Gm−1) |
| I(Gm) |

⋅ | I(Gm) |

2n
| |

A = I(Gi)

B = I(Gi+1)

 can’t be too large!
|A |
|B |

I(Gi)
I(Gi+1)

≤ 2

From Counting to Sampling

On the other hand, one can consecutively sample
each vertex as long as is knownPr[v ∈ I]

On the other hand, one can consecutively sample
each vertex as long as is knownPr[v ∈ I]

The value can be obtained via a counting oracle

On the other hand, one can consecutively sample
each vertex as long as is knownPr[v ∈ I]

The value can be obtained via a counting oracle

The above two reductions require the system to satisfy
“self-reducible” property

