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Given two polynomials

  and  F(x) =
d

∏
i=1

(x − ai) G(x) =
d

∑
i=0

bixi

Is F(x) ≡ G(x)?

Example.  F(x) = (x − 1)(x − 2)(x + 3); G(x) = x3 − 7x + 6





One can expand  and compare the coefficients…F(x)



One can expand  and compare the coefficients…F(x)

It takes  arithmetic operations.O(d2)



One can expand  and compare the coefficients…F(x)

It takes  arithmetic operations.O(d2)

Can be improved to  using FFT.O(d log d)



One can expand  and compare the coefficients…F(x)

It takes  arithmetic operations.O(d2)

Can be improved to  using FFT.O(d log d)

If random coins are allowed…



One can expand  and compare the coefficients…F(x)

It takes  arithmetic operations.O(d2)

Can be improved to  using FFT.O(d log d)

If random coins are allowed…

• The problem can be solved much faster



One can expand  and compare the coefficients…F(x)

It takes  arithmetic operations.O(d2)

Can be improved to  using FFT.O(d log d)

If random coins are allowed…

• The problem can be solved much faster

• at the cost of making error.
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Choosing a uniform number s ∈ {1,2,…,100d}

Test whether F(s) = G(s)

• If , then it always holds that F(x) ≡ G(x) F(s) = G(s)

• If , how likely is that ?F(x) ≢ G(x) F(s) ≠ G(s)

Theorem. (Fundamental Theorem of Algebra) 

A polynomial of degree  has at most  roots in d d ℂ
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Our algorithm outputs wrong answer only when

• ; andF(x) ≢ G(x)

•  is a root of s F(x) − G(x)

This happens with probability at most .
1

100

It only costs  operations to compute  and .O(d) F(s) G(s)

One can repeat the algorithm  times:  t

• error reduces to ;100−t

• cost increases to .O(td)
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Multi-variable Polynomials

The idea applies to a more general setting.

Let  for some field ,F, G ∈ 𝔽(x1, …, xn) 𝔽

Is F(x1, …, xn) ≡ G(x1, …, xn)?



Theorem. (Schwartz-Zippel Theorem) 

Let  be a non-zero multivariate 
polynomial of degree at most . For any set , it 

holds that  

              

Q ∈ 𝔽[x1, …, xn]
d U ⊆ 𝔽

Pr
r1,…,rn∈RU

[Q(r1, …, rn) = 0] ≤
d

|U |
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Proof of Schwartz-Zippel

Induction on , case  is Fundamental Theorem 
of Algebra.

n n = 1

Assuming it holds for smaller …n

Q(x1, …, xn) =
k

∑
i=0

xi
1 ⋅ Qi(x2, …, xn)

Pr [Q = 0] ≤ Pr [Qk = 0] + Pr [Q = 0 |Qk ≠ 0] ≤
d − k
|U |

+
k

|U |
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Our randomized algorithm generalizes to the multi-
variable setting by Schwartz-Zippel theorem. 

If the polynomials are given in product form, one   
scan of  and  is sufficient to evaluate them.F G

Linear time algorithm with at most  error!1 %

It is a wide open problem in the complexity theory 
that whether this can be done in deterministic  
polynomial time.
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Some Complexity Theory

Problems solvable in deterministic polynomial-time:  P

Problems solvable in randomized polynomial-time: BPP

Is ?BPP = P
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Min-Cut in a Graph
A cut in a graph  is a set of edges  
whose removal disconnects .

G = (V, E) C ⊆ E
G

How to find the minimum cut?

It can be solved using max-flow techniques

With the fastest max-flow algorithm, it takes  
time.

O(n × mn)
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Karger’s Min-Cut Algorithm

David Karger 

Using random bits, Karger found 
a much simpler algorithm

The only operation required is 
edge contraction
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Edge Contraction

1

2

3

1

2

3 1/2 3

• parallel edges may exist

• no self-loop
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The Algorithm

Karger’s Min-cut Algorithm 

1. Randomly choose an edge and contract it 
until only two vertices remains. 

2. Output remaining edges.
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Analysis
The algorithm contracts  pair of vertices in total.n − 2

Fix an minimum cut , we bound the probability that it 
survives.

C

Assume the removal of  separates  and 
.

C S ⊆ V
S̄ = V∖S

All contractions happen within  or .S S̄
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For , let  be the event that “ -th 
contraction avoids ”

i = 1,…, n − 2 Ai i
C

We need to bound

Pr [
n−2

⋂
i=1

Ai] =
n−2

∏
i=1

Pr Ai

i−1

⋂
j=1

Aj

We assume |C | = k





In -th contraction,i



In -th contraction,i

• the graph contains  vertices; 

• each vertex is of degree at least .

n − i + 1

k



In -th contraction,i

• the graph contains  vertices; 

• each vertex is of degree at least .

n − i + 1

k

Therefore, conditional on that  still survives,C



In -th contraction,i

• the graph contains  vertices; 

• each vertex is of degree at least .

n − i + 1

k

Therefore, conditional on that  still survives,C

Pr Ai

i−1

⋂
j=1

Aj ≥ 1 −
2k

k(n − i + 1)
=

n − i − 1
n − i + 1





Therefore



Therefore

Pr [
n−2

⋂
i=1

Ai] =
n−2

∏
i=1

Pr Ai

i−1

⋂
j=1

Aj

≥
n−2

∏
i=1

n − i − 1
n − i + 1

=
n − 2

n
⋅

n − 3
n − 1

⋯
1
3

=
2

n(n − 1)
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So if we repeat the algorithm  times, the 
minimum cut survives with probability at least

50n2

1 − (1 −
2

n(n − 1) )
50n2

≥ 1 − e−100

How about the time cost?

If we store the graph in a adjacency matrix, one 
needs  to contract an edge…O(n)
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Karger-Stein’s Trick

Recall Pr [
n−2

⋂
i=1

Ai] =
n − 2

n
⋅

n − 3
n − 1

⋯
1
3

The more we contracts, the easier  gets hitC

Idea: Make a copy before it becomes too bad!

The success probability can be improved to Ω ( 1
log n )


