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Let G = (V ,E) be an undirected graph. For every set of vertices S ⊆ V , we use N (S) to denote its
neighbors, namely N (S) = {v ∈ V \ S : ∃u ∈ S, {u,v} ∈ E}. We use G[S] to denote the subgraph of G
induced by S . Let IS be the set of independent sets of G[S]. We use an assignment σ ∈ {0, 1}V to encode
a set of “occupied” vertices where σ (v) = 1 means the vertex v is occupied and σ (v) = 0 means v is
unoccupied. We say an edge is violated (by σ ) if both of its ends are occupied.

The Gibbs measure of independent sets µ(·) is the uniform distribution over IV . For every S ⊆ V , we
use µS (·) to denote the marginal of µ on S , namely

∀σS ∈ {0, 1}S , µS (σS ) =
!

σ ∈{0,1}V :σ |S=σS

µ(σ ).

For every τ ∈ {0, 1}V \S , define µτS (·) as

∀σS ∈ {0, 1}S , µτS (σS ) ∼ 1[σS ∈ IS ∧
"

e={u,v }:u ∈S,v ∈N (S )
(σS (u) = 0 ∨ π (v) = 0)].

That is, we fix τ as the assignment of the boundary of S , and µτS (σS ) is nonzero iff σS is an independent set
and none of edges across the boundary are violated. It is fine that π itself contains violating edges.

The partial rejection sampling algorithm for sampling independent sets is describedAlgorithm 1, which
first appeared in [GJL19].

Algorithm 1 Partial rejection sampling independent sets
Input: An undirected graph G = (V ,E).
Output: A random independent set of G.

1: Randomly choose σ ∈ {0, 1}V
2: Res ← V
3: while Res ! ' do
4: Resample the assignment of vertices in Res and update σ accordingly
5: Bad ← #

e={u,v }∈E :
σ (u)=σ (v)=1

e

6: Res ← Bad ∪ N (Bad)
7: end while
8: Output σ

We shall prove the correctness of the algorithm, namely the output of Algorithm 1 is a uniform inde-
pendent set. The proof is adapted from a more general one in [FVY19].
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Consider the i-th iteration of the while loop in Algorithm 1. We use X (i) and R(i) to denote the as-
signment σ and the resampling set Res at the end of the loop. Moreover, we let X (0) be the assignment
σ obtained at line 1 and let R(0) = V . Therefore, the execution of the algorithm can be viewed as the
transitions: $

X (0),R(0)
%
→

$
X (1),R(1)

%
→ · · · →

$
X (t ),R(t )

%

In the following, we shall prove that each
&
X (i),R(i)' satisfies certain property, which can imply that X (t )

is a uniform independent set. The property is called conditional Gibbs in [FVY19].

Lemma 1. For every i = 0, . . . , t , every set of vertices r ⊆ V , and every assignment x ∈ {0, 1}V such that
Pr

(
R(i) = r ,X (i)

R(i ) = xr
)
> 0, it holds that

Pr
(
X (i)
S = xs

*** R(i) = r ,X (i)
R(i ) = xr

)
= µxrS (xs ), (1)

where s ≜ V \ r and for any set S ⊆ V , XS denotes the restriction of X on S .

The condition (1) guarantees that the algorithm is well-behaved. It is clear that if Lemma 1 holds, X (t )

is uniform since R(t ) = ' and therefore eq. (1) becomes to

Pr
(
X (t ) = x

)
= µ(x).

We prove Lemma 1 by applying induction on i . The case i = 0 holds trivially, so we consider a transition
(X ,RX ) → (Y ,RY ) where the lemma holds for (X ,RX ) via induction hypothesis. It remains to show that
for every ry ⊆ V and every y ∈ {0, 1}V such that Pr

+
RY = ry ,YRY = yry

,
> 0, it holds that

Pr
+
YS = ysy

** RY = ry ,YRY = yry , = µ
yry
sy (ysy )

where sy ≜ V \ ry .
We first look at those ry and y satisfying Pr

+
RY = ry ,YRY = yry

,
> 0. It must be the case that for some

ỹsy ∈ {0, 1}sy , the resampling set of ỹsy ∪ yry
1 is ry . This means that yry consists of vertices in violated

edges and their neighbors. Therefore, µ
yry
sy (ysy ) =

1[ysy ∈Isy ]!!!Isy
!!! and we are going to show that

Pr
+
YS = ysy

** RY = ry ,YRY = yry , = 1[ysy ∈ Isy ]**Isy ** (2)

Instead of directly proving the equality, we show that the LHS of eq. (2) has following properties:

(1) If ysy " Isy , then LHS= 0;

(2) Otherwise, if we replace ysy by another y ′
sy ∈ Isy , the LHS is invariant.

This two properties together imply Equation (2).
It is easy to see that (1) holds since the complement of the resampling set must be an independent

set, otherwise the vertices in violating edges would have been added into the resampling set. So now we
assume ysy is an independent set. Applying the total probability rule, we obtain

1ỹsy ∪ yry denotes the assignment ỹ ∈ {0, 1}V such that ỹ(u) = ỹsy (u) if u ∈ sy and ỹ(u) = yry (u) if u ∈ ry .
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Pr
+
YSY = ysy

** RY = ry ,YRY = yry ,

=
Pr

+
(Y ,RY ) = (y, ry )

,
Pr

+
RY = ry ∧ YRY = yry

,

=

-
(x,rx ):

Pr[X=x,RX=rx ]>0
Pr [X = x ,RX = rx ] · Pr

+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x , rx )
,

Pr
+
RY = ry ∧ YR = yry

,
= Pr

+
RY = ry ∧ YR = yry

,−1 ·
. !

rx ⊆V ,xrx ∈{0,1}rx :
Pr[XR=xrx ,RX=rx ]>0

Pr
+
XR = xrx ,RX = rx

,
·

!
xsx ∈{0,1}sx

Pr
+
XS = xsx

** XR = xrx ,RX = rx
,
· Pr

+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x , rx )
, /

= Pr
+
RY = ry ∧ YR = yry

,−1 ·
. !

rx ⊆V ,xrx ∈{0,1}rx :
Pr[XR=xrx ,RX=rx ]>0

Pr
+
XR = xrx ,RX = rx

,
·

!
xsx ∈{0,1}sx

1[xsx ∈ Isx ]**Isx ** · Pr
+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x , rx )
, /
, (3)

where sx = V \rx . The last equality above is due to the induction hypothesis Pr
+
XS = xsx

** XR = xrx ,RX = rx
,
=

µ
xrx
sx (xsx ) =

1[xsx ∈Isx ]
|Isx | .

Remember that we want to show that eq. (3) is invariant for ysy ∈ Isy . It is instructive to examine each
term of eq. (3). It is clear that the term Pr

+
RY = ry ∧ YR = yry

,−1 and Pr +XR = xrx ,RX = rx
,
are invariant

for any independent set ysy . Therefore, we can fix a pair (rx ,xrx ) such that Pr
+
XR = xrx ,RX = rx

,
> 0

and examine !
xsx ∈{0,1}sx

1[xsx ∈ Isx ]**Isx ** · Pr
+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x , rx )
,

(4)

Since our partial rejection sampling algorithmonly resamples vertices in rx , Pr
+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x , rx )
,
>

0 only if xsx = ysx . Therefore, we can define an assignment x̃ ∈ {0, 1}V as

x̃(u) =
0
y(u) u ∈ sx ;
xrx (u) u ∈ rx ,

and eq. (4) becomes to

1[x̃sx ∈ Isx ]**Isx ** · Pr
+
(Y ,RY ) = (y, ry )

** (X ,RX ) = (x̃ , rx )
,
.

If x̃sx " Isx , the ends of violating edges must belong to ry , so the whole term is 0 and invariant on ysy .
Otherwise, the term is the constant 1

|Isx |2|rx | .
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