
ADVANCED ALGORITHMS I (SPRING 2020)

CHIHAO ZHANG

This course is mainly about the use of random bits to design and analyze algorithms. Today I will show you some
classical examples that can, hopefully, demonstrate the power of randomness.

1. Polynomial Identity Testing

1.1. Univariate Polynomials. Weare given two polynomials 𝐹 (𝑥),𝐺 (𝑥) ∈ F(𝑥)whereF is some field. The problem
is to decide whether 𝐹 (𝑥) ≡ 𝐺 (𝑥). We consider F = R or F = C. The case when F is a finite field is more subtle.

While formally defining a computational problem, one needs to explicitly specify how the input looks like. In
our case, we have to first agree on how the input polynomials 𝐹 (𝑥) and 𝐺 (𝑥) are encoded: If both polynomials are
represented by their coefficients, namely 𝐹 (𝑥) = ∑𝑑

𝑖=0 𝑓𝑖 · 𝑥𝑖 and 𝐺 (𝑥) = ∑𝑑
𝑖=0 𝑔𝑖 · 𝑥𝑖 , then the identity testing is a

trivial task as one scanning of all coefficients suffices. In practice, we might have following two ways to encode
polynomials:

(1) a polynomial is represented as products of polynomials, e.g. 𝐹 (𝑥) = (𝑥 − 1) (𝑥 − 2) (𝑥 + 3); or
(2) a polynomial is treated as an evaluation oracle, namely given any number 𝑠 ∈ F, there is a black box who can

tell you the value of 𝐹 (𝑥).
Now we assume that 𝐹 (𝑥) is given as 𝐹 (𝑥) = ∏𝑑

𝑖=1 (𝑥 − 𝑎𝑖) and 𝐺 (𝑥) = ∑𝑑
𝑖=0 𝑏𝑖 · 𝑥𝑖 . How to decide whether

𝐹 (𝑥) ≡ 𝐺 (𝑥)? A basic strategy is to expand 𝐹 (𝑥) and compute all the coefficients. If we assume that themultiplication
and addition of two elements in F cost constant time, a straightforward implementation requires 𝑂 (𝑑2) time. One
can use Fast Fourier Transform [3] to accelerate the polynomial multiplication, so that the overall running time can
be reduced to 𝑂 (𝑑 log𝑑).

If random bits are allowed to use, we can decide whether 𝐹 (𝑥) ≡ 𝐺 (𝑥) in linear time, at the cost of making
mistakes with very low probability, say 0.01%. The idea is simple: randomly choose a number 𝑟 ∈ 𝑈 ⊆ F for some
set𝑈 , and test whether 𝐹 (𝑟) = 𝐺 (𝑟). If the equality holds, then output 𝐹 (𝑥) ≡ 𝐺 (𝑥), otherwise output 𝐹 (𝑥) . 𝐺 (𝑥).
The evaluation operation costs 𝑂 (𝑑) time.

It is clear that if 𝐹 (𝑥) ≡ 𝐺 (𝑥), our algorithm always outputs the correct answer. On the other hand, if 𝐹 (𝑥) . 𝐺 (𝑥),
the algorithm might make mistakes. It errs whenever the random number 𝑟 is a root of the polynomial 𝐹 (𝑥) −𝐺 (𝑥).
To analyze the chance of this event, we need the Fundamental Theorem of Algebra.

Theorem 1 (Fundamental Theorem of Algebra). Every non-zero polynomial 𝐹 (𝑥) ∈ C(𝑥) of degree 𝑑 has, counted
with multiplicity, exactly 𝑑 roots in C.

Therefore, since 𝐹 (𝑥) −𝐺 (𝑥) is a polynomial of degree at most 𝑑 , if the set𝑈 is chosen to be sufficiently large, say
|𝑈 | ≥ 100𝑑 , then

Pr𝑟 ∈𝑅𝑈 [𝐹 (𝑟) −𝐺 (𝑟) = 0] ≤ 𝑑

|𝑈 | ≤
1

100
.

There are at least two ways to further decrease the error probability above. We can either enlarge the set𝑈 or to
independently run the algorithm many times. Suppose we independently sample 𝑡 numbers 𝑟1, . . . , 𝑟𝑡 ∈ 𝑈 and look
at 𝐹 (𝑟1) −𝐺 (𝑟1), . . . , 𝐹 (𝑟𝑡) −𝐺 (𝑟𝑡). As long as one of 𝐹 (𝑟𝑖) −𝐺 (𝑟𝑖) is not zero, we can safely claim that 𝐹 (𝑥) . 𝐺 (𝑥).
Therefore, our algorithm fails only when all 𝑟1, . . . , 𝑟𝑡 are roots of 𝐹 (𝑥) −𝐺 (𝑥). This happens with probability at most
100−𝑡 . So 𝑡 independent repetitions dramatically reduce the failure probability, at the cost of using 𝑂 (𝑡𝑑) time.

Date: Last modified on Mar 18, 2020.
1

1.2. Multivariate Polynomials. The benefit of this simple randomized algorithm turns out to be more prominent
in the multivariate case than the univariate case. We are given two polynomials 𝐹 (𝑥1, . . . , 𝑥𝑛),𝐺 (𝑥1, . . . , 𝑥𝑛) ∈
F[𝑥1, . . . , 𝑥𝑛] encoded as product of small polynomials, e.g. 𝐹 = (𝑥1 − 𝑥2)(𝑥2 + 𝑥3)(2𝑥3 − 𝑥4). We still fix a set
𝑈 ⊆ F and independently sample 𝑛 random numbers 𝑟1, . . . , 𝑟𝑛 ∈ 𝑈 uniform at random. The algorithm outputs
𝐹 ≡ 𝐺 if and only if 𝐹 (𝑟1, . . . , 𝑟𝑛) = 𝐺 (𝑟1, . . . , 𝑟𝑛).

As there is no direct generalization of the fundamental theorem of algebra in the multivariate case, we need the
following theorem who directly implies the failure probability.

Theorem 2 (Schwartz-Zippel Theorem). Let 𝑄 ∈ C[𝑥1, . . . , 𝑥𝑛] be a non-zero multivariate polynomial of degree at
most 𝑑 . For any set 𝑈 ⊆ F, it holds that

Pr𝑟1,...,𝑟𝑛 ∈𝑅𝑈 [𝑄 (𝑟1, . . . , 𝑟𝑛) = 0] ≤ 𝑑

|𝑈 | .

Proof. We prove by induction on 𝑛. The case 𝑛 = 1 corresponds to the univariate case and therefore follows from
the fundamental theorem of algebra. Now assume the theorem holds for smaller 𝑛. Without loss of generality we
assume the degree of 𝑥1 is at least 1, then the polynomial 𝑄 can be viewed as a univariate polynomial in 𝑥1 and
written as

𝑄 (𝑥1, . . . , 𝑥𝑛) =
𝑘∑
𝑖=0

𝑥𝑖1 ·𝑄𝑖 (𝑥2, . . . , 𝑥𝑛) =: 𝑃𝑥2,...,𝑥𝑛 (𝑥1),

where 𝑘 is the maximum degree of 𝑥1 and𝑄𝑖 (·) is the coefficient of 𝑥𝑖1. Therefore, for any fixed 𝑥2, . . . , 𝑥𝑛 , 𝑃𝑥2,...,𝑥𝑛 (𝑥1)
is a polynomial in 𝑥1 of degree 𝑘 ≥ 1. To simplify the notation, we use A and B to denote the events “𝑄 = 0” and
“𝑄𝑘 = 0” respectively. Then

Pr [A] = Pr [A ∩ B] + Pr [A ∩ ¬B]
≤ Pr [B] + Pr [A | ¬B]

Since𝑄𝑘 is a polynomial of degree𝑑−𝑘 in𝑛−1 variables, we can apply induction hypothesis and obtainPr [B] ≤ 𝑑−𝑘
|𝑈 | .

On the other hand, conditional on that 𝑄𝑘 ≠ 0, for any fixed 𝑥2, . . . , 𝑥𝑛 , 𝑃𝑥2,...,𝑥𝑛 (𝑥1) is a univariate polynomial of
degree 𝑘 . So Pr [A | ¬B] ≤ 𝑘

|𝑈 | . In conclusion,

Pr [A] ≤ 𝑑 − 𝑘
|𝑈 | +

𝑘

|𝑈 | =
𝑑

|𝑈 | .

□

In fact, there is no known deterministic polynomial-time algorithm for polynomial identity testing formultivariate
polynomials. The fact justifies the usefulness of random bits in the algorithm design.

2. KaRgeR’s Min-Cut AlgoRithm

Given an undirected connected graph𝐺 (𝑉 , 𝐸), a cut is a set of edges𝐶 ⊆ 𝑉 whose removal disconnects the graph.
The Min-Cut problem is to a cut with minimum cardinality.

You might have learnt that the problem can be solved in polynomial-time using a max-flow based algorithm: Fix
a source 𝑠 and enumerate all possible sinks 𝑡 . For each pair of the source and the sink (𝑠, 𝑡), one can compute the
max-flow between 𝑠 and 𝑡 . Let 𝑆 be the set of vertices connected to 𝑠 after removing all edges with flow. Then a
min-cut between 𝑠 and 𝑡 is those edges between 𝑆 and its complement, denoted by 𝐶𝑡 = 𝐸 (𝑆, 𝑆). The global min-cut
is therefore the minimum one over all 𝐶𝑡 . The famous max-flow min-cut [4] theorem guarantees the correctness of
the algorithm. The running time depends on the algorithm to compute max-flow between 𝑠 and 𝑡 . With the fastest
algorithm so far [5], the total cost is 𝑂 (𝑛2𝑚) where 𝑛 = |𝑉 | and𝑚 = |𝐸 |.

Karger [1] presented a very simple randomized algorithm for the problem. The main operation used in the algo-
rithm is the contraction of edges. Given a graph 𝐺 = (𝑉 , 𝐸) and an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, the contraction of 𝑒 merges
𝑢 and 𝑣 and removes all edges between 𝑢 and 𝑣 . The operation is illustrated in the Figure 1

2

FiguRe 1. Contract an edge between vertex 1 and vertex 2.

Note that the contraction operation may produce multiple edges between two vertices. Karger’s algorithm is
described in Algorithm 1.

Algorithm 1 Karger’s Min-Cut Algorithm
Input: An undirected graph 𝐺 = (𝑉 , 𝐸).
Output: The minimum cut of 𝐺 .

1: while 𝐺 contains more that two vertices do
2: Choose an edge 𝑒 ∈ 𝐸 (𝐺) uniformly at random;
3: Contract 𝑒 in 𝐺 ;
4: end while
5: Assuming 𝑉 = {𝑢, 𝑣}, 𝑆 ← vertices merged to 𝑢;
6: return 𝐸 (𝑆, 𝑆);

We say a cut𝐶 survived after the algorithm if none of the edges in𝐶 has been contracted during the execution of
the algorithm. We will show that any minimum cut of𝐺 will survive with a reasonable probability after one pass of
the algorithm. The reason is that in each step of the algorithm, the contracted edge is picked uniformly at random,
so the chance to hit the min-cut is small.

Let us fix amin-cut𝐶 with |𝐶 | = 𝑘 and assume the removal of𝐶 separates 𝑆 ⊆ 𝑉 and 𝑆 = 𝑉 \𝑆 . Therefore𝐶 survives
if and only if all contractions happenwithin𝐺 [𝑆] or𝐺 [𝑆]1. Since in each iteration, the algorithmmerged two vertices
and terminates when only two vertices remained, there are 𝑛 − 2 iterations in total. For every 𝑖 = 1, . . . , 𝑛 − 2, let 𝐴𝑖

be the event that “𝑖-th contraction avoids 𝐶”. We consider the probability

(1) Pr

[
𝑛−2⋂
𝑖=1

𝐴𝑖

]
=

𝑛−2∏
𝑖=1

Pr

[
𝐴𝑖

����� 𝑖−1⋂
𝑗=1

𝐴 𝑗

]
.

Note that in the 𝑖-th iteration, the graph contains 𝑛 − 𝑖 + 1 vertices and conditional on that 𝐶 has never been hit
before, each vertex is of degree at least 𝑘 (otherwise, the minimum cut is less than 𝑘). Therefore, the number of edges
in 𝑖-th iteration is at least 𝑘 · (𝑛−𝑖+1)

2 . This implies

Pr

[
𝐴𝑖

����� 𝑖−1⋂
𝑗=1

𝐴 𝑗

]
≥ 1 − 2𝑘

𝑘 · (𝑛 − 𝑖 + 1) =
𝑛 − 𝑖 − 1
𝑛 − 𝑖 + 1 .

Combining with Equation (1) yields

Pr

[
𝑛−2⋂
𝑖=1

𝐴𝑖

]
≥

𝑛−2∏
𝑖=1

𝑛 − 𝑖 − 1
𝑛 − 𝑖 + 1 =

2

𝑛(𝑛 − 1) .

So if we repeat the algorithm 50𝑛2 times, the minimum cut survives with probability at least

(2) 1 −
(
1 − 2

𝑛(𝑛 − 1)

)50𝑛2

≥ 1 − 𝑒−100,

which is quite close to 1.
What is the time cost of this randomized algorithm? If we maintain the adjacency matrix of the graph, each

contraction requires 𝑂 (𝑛) operations. Therefore, to get the probability bound in Equation (2), one needs to cost
𝑂 (𝑛4) time.

1For any 𝑆 ⊆ 𝑉 , we use𝐺 [𝑆] to denote the subgraph of𝐺 induced by 𝑆 .
3

The 𝑂 (𝑛4) is already comparable to the maxflow based algorithm with the most sophisticated flow algorithm in
dense graphs! Moreover, Karger’s algorithm is much simpler and easier to implement. In fact, Karger and Stein [2]
improved the algorithm to 𝑂 (𝑛2)2. I have left the development of the improvement as an exercise.

RefeRences
[1] D. R. KaRgeR, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm., in SODA, vol. 93, 1993, pp. 21–30. 2
[2] D. R. KaRgeR and C. Stein, A new approach to the minimum cut problem, Journal of the ACM (JACM), 43 (1996), pp. 601–640. 4
[3] WiKipedia contRibutoRs, Fast fourier transform —Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Fast_Fourier_transform, 2020. 1
[4] , Max-flow min-cut theorem — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Max-flow_

min-cut_theorem, 2020. 2
[5] , Maximum flow problem — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Maximum_flow_

problem, 2020. 2

2The notation𝑂 (𝑇) means𝑂 (𝑇 · polylog(𝑇)) .
4

https://en.wikipedia.org/w/index.php?title=Fast_Fourier_transform
https://en.wikipedia.org/w/index.php?title=Fast_Fourier_transform
https://en.wikipedia.org/w/index.php?title=Max-flow_min-cut_theorem
https://en.wikipedia.org/w/index.php?title=Max-flow_min-cut_theorem
https://en.wikipedia.org/w/index.php?title=Maximum_flow_problem
https://en.wikipedia.org/w/index.php?title=Maximum_flow_problem

	1. Polynomial Identity Testing
	1.1. Univariate Polynomials
	1.2. Multivariate Polynomials

	2. Karger's Min-Cut Algorithm
	References

