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1 Martingale

Definition 1. In a probability space (Q, F,Pr), a sequence of finite variables {Z,},>0 is a martingale w.r.t

another sequence { Xy }n>o if
Vn > 1,E[Zn | Xla e ’Xn—l] = Zn—1~

More formally, if we use F,, = 0(X3,...,X,) to denote the c-algebra generated by X1, -- , X, then 1 C
F2 C -+ C F forms a filtration. Then we call {Z,,} -, a martingale if

Vn > 1LLE [Zn I 7:,1_1] = Zn—l-
Simlarly, we say {Z,}, s, a supermartingale if
Vn Z 1’E[Zfl | ﬂ—l] S Zn—l,

and a submartingale if
Vn2> LE[Z, | Foil 2 Zpy.

1.1 Examples

1.1.1 The sum of independent random variables is a martingale

k
Claim 2. Assume that X, ...,X, aren independent random variables with E[X;] = 0. Let Sx = . X; and
i=1

i=

Xt = (X1,...,Xg). Then {S;}is1 is a martingale w.r.t. {X;}is1.
Proof.

E [Sl )_(i_l] =S;_1+E [X, |)_(i—1] =Si_1.

)_(i—1] =E [Si—l + Xi

1.1.2 The product of independent random variables is a martingale

k

Claim 3. Assume that Xy, ...,X, aren independent random variables withE [X;] = 1. Let Py = [] X;. Then
i=1

{P;}i>1 is a martingale wr.t. {X;}i>1.

Proof.
E|P

)_(i—1] =E [Pi—l - Xi ‘)_(1—1] =Pi1-E [Xi |)_(i—1] =P



1.1.3 Doob Sequence

Let X1, . .., X, be asequence of (unnecessarily independent) random variables and f(X,) = f(X1,...,X,) €
R be a function. For i > 0, we define

Z=E|f(X,)

Xi|
We can see that
Zy=E|f(X,):
Zn = f(Xn).

Therefore, Z,, is the value of the function given the input X, and Z, is the average of the function value
without any knowledge about the input. The sequence {Z;},, can be viewed as our estimation of the
function value provided more and more information as i increases.

Lemma 4. {Z,},>¢ is a martingale w.rt. {X, }n>o0.

Proof.

E [Zi

X1 = BB Rl | Xt = B[ )

)_(i—l] =Zi

2 Azuma-Hoeflding Inequality

Suppose we have a series of random variables {X,},>1, which satisfy X; € [a;, b;]. Without loss of gen-
k

erality, we assume E(X;) = 0. Otherwise, we can replace X; with X; — E(X;). Let Sx = > X;. The
i=1

Azuma-Hoeffding inequality is:

Theorem 5. If{S,},>1 is a martingale w.rt. {X, }n>1, then

2t?
Pr(S, > t] <exp|——

2 (bi — a;)?
i=1

Now we will sketch a proof of the Azuma-Hoeftfding, which is quite similar to our proof of the Hoeffd-
ing inequality. Recall when we were trying to prove the Hoeffding inequality, the most difficult part is to
estimate the moment generating function, or namely the term

o]

i=1

E[e*"] =E

We applied the independent properties of random variables and obtain

n n
l_leaXi] - E [eaXi]
i=1

i=1

E




Then we use the Hoeffding lemma

E[en] < e ™5

In the case of Azuma-Hoeffding, we can use the property of martingales instead of independence to
obtain a similar bound. To see this, we have

n

[

i=1

n

Bl [ e (X1

i=1

n-1
1—[ e(xX,-E[eaXn |)—(n_1]
i=1

E =E

=E

The bounds then follows by an induction argument and a conditional expectation version of Hoeffding

lemma:
a(bi-a;)?

E[e“X" )_(n_l] <e T ' . (1)

The proof the (1) is the same as our proof of Hoeffding lemma last time.

3 McDiarmid’s Inequality

The Doob sequence we introduced in the first section is a class of important martingales. Recall that
Zp=f(X,)and Z, = E [f()_(n)] We would like to apply Azuma-Hoeffding to bound |Z,, — Zy|. Sometimes

it is more convenient to apply the following McDiarmid inequality to obtain concentration bounds. It is a
consequence of Azuma-Hoeffding for Doob martingales.

Informally, given a Doob sequence {Z;};-,, in order to apply Azume-Hoeftfding, we need to construct
{Xi}iZO and {Si}iZO- We let Xi = Zl' - Zi—l and

Si=Xi+-+Xi=(Z1—-20)+- -+ (Zi = Zi1) = Zi — Zo.
It remains to determine the “width” of each X;. This is captured by the notion of c-Lipschitz.

Definition 6. A function f(xi,- - - ,xy) satisfies c-Lipschitz condition if

Vl € [n]avxh‘ o ’xn’vyi : |f(x1" R & P ’xn) _f(xl" o ’yi" o axn)l S C.
We are now ready to state and prove McDiarmid’s inequality.

Theorem 7 (McDiarmid’s Inequality). Let f be a function on n variables satisfying c-Lipschitz condition and
X1, -+, Xy ben independent variables. Then we have

+2

Pr{|f(Xi, -+, X)) —E[f(X1,- -, Xp)]| > t] < 2e ne?.

I

Proof. We use f and {X;};>; to define a Doob martingale {Z;};>1:

Vi:Z =E[f()_(n)

>—<i] .
Let
Xi =2 - Ziy =B | f0) | K| - B [£(D | Xia] -

3



Next we try to determine the “width” of Z; — Z;_;. We first set a lower bound B;:
Zi-Ziy 2 infE [f()_() | X1, X; = x] _E [f()_() | >_<’i_1] » B,
The upper bound of Z; — Z;_; is
Zi=Zio1 < supE [f()_() | Xii1 Xi = y] _E [f()_() ’ YH] .
The gap between the upper bound and the lower bound is

sup (B[00 | Xic1,Xi = | ~E[ 30 | Kics.X; = ] )

)

©)
= sup (E [f(xl"" s Xi—1, Y, Xj41 * * ,xn)_f(X1,“' s Xi—1, X, Xj+1,* ** ,xn)
Xy

<c

’

where () uses the fact that X; is independent of X;_;.
Hence we have X; = Z; — Z;_; € [B;, B; + c]. Applying Azuma-Hoeffding, we have

2t2

Pr(|Z, — Zo| > t] < 2¢ n?.

Note that Zy = E[f(Xy, -+ ,Xp)] and Z,, = f(Xy,- -+, X,), we have

+2

Pr(|f(Xi, -+, Xn) —E[f (X1, -, Xp)]| > t] < 2e ne?.

I

4  Applications of McDiarmid’s Inequality

4.1 Pattern Matching

Problem 8. Let B € {0,1}* be a fixed string. For a random string X € {0,1}", what is the expected number
of occurrences of B in X ?

The expectation can be easily calculated using the linearity of expectations. We define n independent
random variables X1, - - - , X,,, where X; denotes i-th character of X. Let F(X3,--- ,X},) be the number of
occurrences of B in X. Note that there are at most n — k + 1 occurrences of B in X, we can enumerate all
the occurrences. By the linearity of expectation, we have

EiF = k+1
T
We can then use McDarmid’s inequality to show that F is well-concentrated. For every i, we define
Z; = E [F (Xn) | X i]. The sequence {Z;} is a Doob sequence and therefore it is a martingale.

If we change one bit of X, the number of occurrences changes at most k. Hence F satisfies k-Lipschitz
condition. Applying McDiarmid’s Inequality with ¢t = §k+/n, we have

Pr[|Z, - Zo| > k| = Pr[|F — E[F]| > 6kvn| < 2¢72".



4.2 Chromatic Number

Another application of McDiarmid’s Inequality is to establish the concentration of choromatic number for
Erd6s-Rényi random graphs G(n, p). The notation G(n, p) specifies a distribution over all undirected graphs
with n vertices. In the model, each of the (}) possible edges exists with probability p independently.

We define n random variables X, - - - , X;;, where X; denotes the edges between v; and {vy, -+ ,v;_1}.
Once X3, - -+, X}, are given, the graph is known. Since X; only involves the connections between v; and
v1,**+ ,Vj_1, the n variables are independent.

Let y(Xi,---,X,) be the chromatic number. For every i, we define Z; £ E [)((Xl, e Xn) )_(i]. Then

{Z;} is a Doob sequence.
If X; changes, the chromatic number changes at most 1. Hence y satisfies 1-Lipschitz conditions.
Applying McDiarmid’s Inequality with ¢ = §v/n, we have

Pr[|Z, - Zo| = 6vn| = Pr [y —E[x]| = 6vn] < 2¢7%".



