
Advanced Algorithms VIII (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Ruihan Guo & Linsong Guo

Last modified on Nov 12, 2020

1 Martingale

Definition 1. In a probability space (Ω,F , Pr), a sequence of finite variables {Zn}n≥0 is a martingale w.r.t
another sequence {Xn}n≥0 if

∀n ≥ 1,E [Zn | X1, . . . ,Xn−1] = Zn−1.

More formally, if we use Fn = σ (X1, . . . ,Xn) to denote the σ -algebra generated by X1, · · · ,Xn , then F1 ⊆
F2 ⊆ · · · ⊆ F forms a filtration. Then we call {Zn}n≥0 a martingale if

∀n ≥ 1,E [Zn | Fn−1] = Zn−1.

Simlarly, we say {Zn}n≥0 a supermartingale if

∀n ≥ 1,E [Zn | Fn−1] ≤ Zn−1,

and a submartingale if
∀n ≥ 1,E [Zn | Fn−1] ≥ Zn−1.

1.1 Examples

1.1.1 The sum of independent random variables is a martingale

Claim 2. Assume that X1, . . . ,Xn are n independent random variables with E[Xi ] = 0. Let Sk =
k!
i=1

Xi and

X k = (X1, . . . ,Xk ). Then {Si }i≥1 is a martingale w.r.t. {Xi }i≥1.
Proof.

E
"
Si

### X i−1
$
= E

"
Si−1 + Xi

### X i−1
$
= Si−1 + E

"
Xi

### X i−1
$
= Si−1.

□

1.1.2 The product of independent random variables is a martingale

Claim 3. Assume that X1, . . . ,Xn are n independent random variables with E [Xi ] = 1. Let Pk =
k%
i=1

Xi . Then

{Pi }i≥1 is a martingale w.r.t. {Xi }i≥1.
Proof.

E
"
Pi

### X i−1
$
= E

"
Pi−1 · Xi

### X i−1
$
= Pi−1 · E

"
Xi

### X i−1
$
= Pi−1

□
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1.1.3 Doob Sequence

LetX1, . . . ,Xn be a sequence of (unnecessarily independent) randomvariables and f (Xn) = f (X1, . . . ,Xn) ∈
R be a function. For i ≥ 0, we define

Zi = E
"
f (Xn)

### X i

$
We can see that

Z0 = E
"
f (Xn)

$
;

Zn = f (Xn).

Therefore, Zn is the value of the function given the input Xn and Z0 is the average of the function value
without any knowledge about the input. The sequence {Zi }i≥0 can be viewed as our estimation of the
function value provided more and more information as i increases.

Lemma 4. {Zn}n≥0 is a martingale w.r.t. {Xn}n≥0.

Proof.

E
"
Zi

### X i−1
$
= E

"
E[f (Xn)]

### X i−1
$
= E

"
f (Xn)

### X i−1
$
= Zi−1

□

2 Azuma-Hoeffding Inequality

Suppose we have a series of random variables {Xn}n≥1, which satisfy Xi ∈ [ai ,bi ]. Without loss of gen-

erality, we assume E(Xi ) = 0. Otherwise, we can replace Xi with Xi − E(Xi ). Let Sk =
k!
i=1

Xi . The

Azuma-Hoeffding inequality is:

Theorem 5. If {Sn}n≥1 is a martingale w.r.t. {Xn}n≥1, then

Pr [Sn ≥ t] ≤ exp
&'''
(
− 2t2

n!
i=1

(bi − ai )2

)***
+

Now we will sketch a proof of the Azuma-Hoeffding, which is quite similar to our proof of the Hoeffd-
ing inequality. Recall when we were trying to prove the Hoeffding inequality, the most difficult part is to
estimate the moment generating function, or namely the term

E
,
eαSn

-
= E

.
n/
i=1

eαXi

0
.

We applied the independent properties of random variables and obtain

E

.
n/
i=1

eαXi

0
=

n/
i=1

E
,
eαXi

-
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Then we use the Hoeffding lemma

E
,
eαXi

-
≤ e−

α (bi−ai )2
8 .

In the case of Azuma-Hoeffding, we can use the property of martingales instead of independence to
obtain a similar bound. To see this, we have

E

.
n/
i=1

eαXi

0
= E

.
E[

n/
i=1

eαXi
##Xn−1]

0

= E

.
n−1/
i=1

eαXiE[eαXn
##Xn−1]

0

The bounds then follows by an induction argument and a conditional expectation version of Hoeffding
lemma:

E
"
eαXn

### Xn−1
$
≤ e−

α (bi−ai )2
8 . (1)

The proof the (1) is the same as our proof of Hoeffding lemma last time.

3 McDiarmid’s Inequality

The Doob sequence we introduced in the first section is a class of important martingales. Recall that
Zn = f (Xn) andZ0 = E

"
f (Xn)

$
. We would like to apply Azuma-Hoeffding to bound |Zn − Z0 |. Sometimes

it is more convenient to apply the following McDiarmid inequality to obtain concentration bounds. It is a
consequence of Azuma-Hoeffding for Doob martingales.

Informally, given a Doob sequence {Zi }i≥0, in order to apply Azume-Hoeffding, we need to construct
{Xi }i≥0 and {Si }i≥0. We let Xi = Zi − Zi−1 and

Si = X1 + · · · + Xi = (Z1 − Z0) + · · · + (Zi − Zi−1) = Zi − Z0.

It remains to determine the “width” of each Xi . This is captured by the notion of c-Lipschitz.

Definition 6. A function f (x1, · · · ,xn) satisfies c-Lipschitz condition if

∀i ∈ [n],∀xi , · · · ,xn ,∀yi : | f (x1, · · · ,xi , · · · ,xn) − f (x1, · · · ,yi , · · · ,xn)| ≤ c .

We are now ready to state and prove McDiarmid’s inequality.

Theorem 7 (McDiarmid’s Inequality). Let f be a function on n variables satisfying c-Lipschitz condition and
X1, · · · ,Xn be n independent variables. Then we have

Pr [| f (X1, · · · ,Xn) − E [f (X1, · · · ,Xn)]| ≥ t] ≤ 2e−
2t2
nc2 .

Proof. We use f and {Xi }i≥1 to define a Doob martingale {Zi }i≥1:

∀i : Zi = E
"
f (Xn)

### X i

$
.

Let
Xi = Zi − Zi−1 = E

"
f (X )

### X i

$
− E

"
f (X )

### X i−1
$
.
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Next we try to determine the “width” of Zi − Zi−1. We first set a lower bound Bi :

Zi − Zi−1 ≥ inf
x

E
"
f (X )

### X i−1,Xi = x
$
− E

"
f (X )

### X i−1
$
≜ Bi .

The upper bound of Zi − Zi−1 is

Zi − Zi−1 ≤ sup
y

E
"
f (X )

### X i−1,Xi = y
$
− E

"
f (X )

### X i−1
$
.

The gap between the upper bound and the lower bound is

sup
x,y

1
E
"
f (X )

### X i−1,Xi = y
$
− E

"
f (X )

### X i−1,Xi = x
$ 2

(♥)
= sup

x,y

1
E
"
f (x1, · · · ,xi−1,y,xi+1 · · · ,xn) − f (x1, · · · ,xi−1,x ,xi+1, · · · ,xn)

### X i−1
$ 2

≤ c,

where (♥) uses the fact that Xi is independent of X i−1.
Hence we have Xi = Zi − Zi−1 ∈ [Bi ,Bi + c]. Applying Azuma-Hoeffding, we have

Pr [|Zn − Z0 | ≥ t] ≤ 2e−
2t2
nc2 .

Note that Z0 = E [f (X1, · · · ,Xn)] and Zn = f (X1, · · · ,Xn), we have

Pr [| f (X1, · · · ,Xn) − E [f (X1, · · · ,Xn)]| ≥ t] ≤ 2e−
2t2
nc2 .

□

4 Applications of McDiarmid’s Inequality

4.1 Pattern Matching

Problem 8. Let B ∈ {0, 1}k be a fixed string. For a random string X ∈ {0, 1}n , what is the expected number
of occurrences of B in X ?

The expectation can be easily calculated using the linearity of expectations. We define n independent
random variables X1, · · · ,Xn , where Xi denotes i-th character of X . Let F (X1, · · · ,Xn) be the number of
occurrences of B in X . Note that there are at most n − k + 1 occurrences of B in X , we can enumerate all
the occurrences. By the linearity of expectation, we have

E [F ] = n − k + 1
2k

.

We can then use McDarmid’s inequality to show that F is well-concentrated. For every i , we define
Zi ≜ E

"
F (Xn)

### X i

$
. The sequence {Zi } is a Doob sequence and therefore it is a martingale.

If we change one bit of X , the number of occurrences changes at most k . Hence F satisfies k-Lipschitz
condition. Applying McDiarmid’s Inequality with t = δk

√
n, we have

Pr
,
|Zn − Z0 | ≥ δk

√
n
-
= Pr

,
|F − E [F ]| ≥ δk

√
n
-
≤ 2e−2δ

2
.
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4.2 Chromatic Number

Another application of McDiarmid’s Inequality is to establish the concentration of choromatic number for
Erdős-Rényi random graphsG(n,p). The notationG(n,p) specifies a distribution over all undirected graphs
with n vertices. In the model, each of the

3n
2
4
possible edges exists with probability p independently.

We define n random variables X1, · · · ,Xn , where Xi denotes the edges between vi and {v1, · · · ,vi−1}.
Once X1, · · · ,Xn are given, the graph is known. Since Xi only involves the connections between vi and
v1, · · · ,vi−1, the n variables are independent.

Let χ (X1, · · · ,Xn) be the chromatic number. For every i , we define Zi ≜ E
"
χ (X1, . . . ,Xn)

### X i

$
. Then

{Zi } is a Doob sequence.
If Xi changes, the chromatic number changes at most 1. Hence χ satisfies 1-Lipschitz conditions.

Applying McDiarmid’s Inequality with t = δ
√
n, we have

Pr
,
|Zn − Z0 | ≥ δ

√
n
-
= Pr

,
|χ − E [χ ]| ≥ δ

√
n
-
≤ 2e−2δ

2
.
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