
Advanced Algorithms VII (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Haichen Dong, Yi Gu

Last modified on Nov. 1, 2020

Concentration inequalities are ubiquitous in the analysis of randomized algorithms. Today we will see
that they also help while designing algorithms.

We will study the Multi-Armed Bandit (MAB) problem. MAB is an important model for online decision
making that has been widely studied. Today we will study the simplest setting of the problem and two
classic algorithms.

1 The Problem Setting

Suppose there is a k-arm bandit, and the reward of each arm is some distribution fi ∈ [0, 1]with E [fi] = µi .
W.l.o.g, suppose µ1 > µ2 ≥ · · · ≥ µk . Now suppose you can pull the bandit for T rounds. If we learn
µ1, . . . , µk well, the optimal strategy is to pull the arm 1 for T times, and the expected reward is T µ1.
However, we currently have no idea about the k arms, and have to explore the bandit during theT rounds.

Denote by at the arm pulled at round t , and thus we have the reward in the t-th round Xt ∼ fat . The
regret of a strategy is defined as the gap between T µ1 and expected rewards of the strategy in T rounds:

R(T) := T µ1 − E

!
T"
t=1

Xt

#
≥ 0.

Note that in the expression above, the randomness of the expectation E [·] usually comes from two parts:
the randomness of the distributions fi and the randomness from the strategy. For every i ∈ [k], we denote
∆i ≜ µ1 − µi ≥ 0. A naive algorithm pulls each arm for equal times, resulting in R(T) =

!k
i=1 ∆i
k · T which

is linear in T . We consider a strategy/algorithm good if it holds that limT→∞ R(T)/T = 0 or equivalently
R(T) = o(T).

The following theorem is useful when analyzing randomized algorithms for MAB.

Theorem 1. ∀t ∈ [T],ni (t) =
$t

s=1 1as=i denotes the number of times arm i pulled in the first t rounds. Then

R(T) =
k"
i=2

∆i · E [ni (T)] .

Proof.

R(T) = T µ1 − E

!
T"
t=1

Xt

#
= T µ1 −

T"
t=1

µat =
T"
t=1

k"
i=1

∆i · E
%
1at=i

&
=

k"
i=1

∆i · E
!
T"
t=1

1at=i

#
=

k"
i=1

∆i · E [ni (T)] .

□

We also write Ri (T) = ∆i · E [ni (T)] for every i ∈ [k], and then R(T) = $k
i=1 Ri (T).

1

2 The Explore-then-Commit (ETC) Algorithm

To get a small regret, the strategy should identify the best arm as soon as possible. The most straightfor-
ward way to find the best arm is to try each arm a few times and compare their rewards. The Explore-then-
Commit algorithm implements this idea: Pull every arm for L times (within total kL times), and calculate
µ̂i (the average reward gained in that L times). Then always pull the arm with highest µ̂i . We can write its
regret as

R(T) = L
k"

n=1
∆i +

k"
i=2

∆i ·
T"

t=kL+1

Pr
'
µ̂i > max

j!i
µ̂ j

(

= L
k"

n=1
∆i +

k"
i=2

∆i · (T − kL)Pr
'
µ̂i > max

j!i
µ̂ j

(
. (1)

When i ! 1,

Pr
'
µ̂i > max

j!i
µ̂ j

(
≤ Pr [µ̂i > µ̂1] . (2)

We bound (2) by concentration inequalities. To this end, let X j be the jth reward of fi , Yj be the jth
reward of f1. Let Z j = X j − Yj ∈ [−1, 1], then E

%
Z j
&
= −∆i ≤ 0. Let Z =

$L
j=1 Z j , then E [Z] = −L∆i .

By Hoeffding’s Inequality,

Pr
%
µ̂i > µ̂ j

&
= Pr [Z > 0] = Pr [Z − E [Z] ≥ L∆i] ≤ exp

)
−2(L∆i)2$L

j=1 22

*
= exp

+
−
L∆2

i

2

,
.

Combining this with (1), we have

R(T) ≤ L
k"
i=1

∆i + (T − kL)
k"
i=2

∆i exp
+
−
L∆2

i

2

,

≤
k"
i=1

+
L∆i +T∆i exp

+
−
L∆2

i

2

,,
≤

k"
i=1

+
L +T∆i exp

+
−
L∆2

i

2

,,
.

To further upper bound R(T), we define

д(L,∆i) ≜ L +T∆i exp(−
L∆2

i

2
).

We would like to determine L which can minimize the upper bound of R(T) among all possible ∆i , i.e.,
minL max∆i R(T). First we calculate max∆i д(L,∆i):

∂д(L,∆i)
∂∆i

= T (1 − L∆2
i) exp

+
−L∆

2

2

,
.

We have
∂д(L,∆i)
∂∆i

> 0 when 0 ≤ ∆i <
1
√
L
, and

∂д(L,∆i)
∂∆i

< 0 when 1 ≥ ∆i >
1
√
L
.

2

Thus, for all L > 1,

д(L,∆i) ≤ д(L, 1
√
L
) = L +

T e−1/2
√
L
.

Finally,

R(T) ≤
k"
i=1

(L + T e−1/2
√
L

) = Θ(kT 2
3),

by letting L = Θ(T 2
3).

The Explore-then-Commit algorithm works better than the naive one but still has some disadvantages.
It treats all arms equally in the exploration step and pulls each of them L times regardless of the rewards
already obtained. The regret bound O

-
T

2
3

.
is suboptimal.

3 The Upper Confidence Bounds (UCB) Algorithm

Therefore in order to overcome the weakness of ETC, during the exploration phase, the algorithm should
adaptively make use of the information obtained so far. The brilliant idea of the UCB algorithm is to
adaptively maintain an interval [ai ,bi] for each arm i so that the mean µi is within the interval with high
probability based on the current knowledge on µi .

Now suppose you already know µi ∈ [ai ,bi] for each arm i ∈ [k] with high probability after some
exploration, which arm will you pull now? The name “upper confidence bound” means that we always
choose the one with the highest upper bound bi .

This sounds like you are walking on a snack street in a country that you have never been to. There is
a Chinese canteen, which you are very familiar with. The food there is at least not bad, but can never be
surprisingly wonderful. Besides, there is also a local canteen. As you have little idea about the local food,
it may taste horrible, but also has a possibility to have a heavenly good taste. The upper confidence tells
you to walk into the local canteen, even with more risk to take an extremely bad dinner.

In order to implement the idea, we have to specify how to maintain the an interval for each arm.
Formally, for all t ∈ [T] and i ∈ [k], on round t we not only track µ̂i (t), but also maintain an interval
[ai (t),bi (t)] so that µi ∈ [ai (t),bi (t)] with probability no less than 1 − δi (t) for a parameter δi (t) to be
chosen later. Let ai (t) := µ̂i (t) − ci (t) and bi (t) := µ̂i (t) + ci (t). Let us see how to pick ci (t). In the below,
when t is clear from the context, we may drop it.

By Hoeffding’s inequality, ci should meet

Pr [|µi − µ̂i | > ci] ≤ 2 exp(−3nic2i) ≤ δi =⇒ ci ≥

/
log(2/δi)

2ni
.

Note that the upper bound bi = µ̂i + ci can be large (which means that we are more likely to explore
the arm i) if either µ̂i is large, or ni is small, which means we have not explored it enough.

3.1 Bounding the regret R(T)
For all i ∈ [k], the regret contributed by the arm i is

Ri (T) = ∆iE [ni (T)] ≤ ∆i

T"
t=1

Pr [µ̂i (t) + ci (t) ≥ µ̂1(t) + c1(t)] .

3

We define events

A : Every one is in its interval at any time;
Bi (t) : µ̂i (t) + ci (t) ≥ µ̂1(t) + c1(t).

Thus

Ri (T) = ∆i ·
T"
t=1

Pr [Bi (t)]

= ∆i ·
T"
t=1

-
Pr [Bi (t) | A] Pr [A] + Pr

%
Bi (t) | A

&
Pr

%
A
& .

≤ ∆i ·
)
T"
t=1

Pr [Bi (t) | A] +
T"
t=1

Pr
%
A
& *
.

We then bound
$T

t=1 Pr
%
A
&
and

$T
t=1 Pr [Bi (t) | A] respectively.

• Note that A is the event “∃t ∈ [T],∃i ∈ [k], µi " [ai (t),bi (t)]”, by union bound, we have

Pr
%
A
&
≤

k"
i=1

T"
t=1

δi (t).

Therefore if we choose δi (t) = 1/T 2 for all i ∈ [k] and t ∈ [T], then
T"
t=1

Pr
%
A
&
≤ T · kT · 1

T 2 = k .

• Since conditioned on A, µi ∈ [ai (t),bi (t)] for all i ∈ [k] and t ∈ [T], we have0
µ̂i (t) + ci (t) ≤ (µi + ci (t)) + ci (t) = µi + 2ci (t)
µ̂1(t) + c1(t) ≥ (µ1 − c1(t)) + c1(t) = µ1

.

Therefore µi + 2ci (t) ≤ µ1 is a sufficient condition of Bi (t) not happening conditioned on A.
And with δ = 1/T 2,

Bi (t) not happening conditioned on A ⇐= µi + 2ci (t) ≤ µ1

⇐⇒

/
log(2/si (t))

2ni (t)
≤ ∆i

2

⇐⇒ ni (t) ≥
4 log(

√
2T)

∆2
i

⇐= ni (t) ≥
6 logT
∆2
i
.

This indicates that if ni (t) ≥ 6 logT
∆2
i

, Bi (t) will never happen conditioned onA. The fact implies that

T"
t=1

Pr [Bi (t) | A] =
T"
t=1

E [1[Bi (t)] | A] ≤ 6 logT
∆2
i
.

4

So far we have found an upper bound for Pr [Bi (t) | A], but it may be very large if ∆i is very small.
However, remember that if ∆i is small, pulling i will only cause little regret, thus we fix some ∆ and divide
the k arms into two groups of ∆ ≤ ∆i and ∆ > ∆i , and calculate the correspond regret separately as
follows:

R(T) =
k"
i=1

∆iE [ni (T)]

=
"

i :∆i ≤∆
∆iE [ni (T)] +

"
i :∆i ≥∆

∆iE [ni (T)]

≤ T∆ +
"

i :∆i>∆
∆i

+
6 logT
∆2
i
+ k

,

≤ T∆ +
6k logT

∆
+ k2

= Θ(
1
kT logT),

by letting ∆ =
2

6k logT
T .

5

