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In this lecture, we prove the Johnson-Lindenstrauss Lemma, which is an important algorithmic applica-
tion of concentration inequalities. To this end, we introduce the notion of sub-Gaussian random variables
and the Bernstein’s inequality.

1 Johnson-Lindenstrauss Lemma

Given a collection of points in a high-dimensional space, one might try to map the points into a low-
dimensional space without distorting the relative distances between points very much. This problem is
called metric embedding in literature. The Johnson-Lindenstrauss lemma states that such an embedding
exists in certain case.

Lemma 1 (Johnson-Lindenstrauss Lemma). Let S be a collection of points set that S € RP. Then for every
¢ € (0, 1), there exists a projection f : RP — R withd = O (log(|S|/€%)) such thatVx,y € S,x # y, it holds

that
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Note that in the statement of JL lemma, the dimension d is irrelevant to D. So D can be arbitrary large
or even infinite. It is surprising that a random linear projection from RP to R? satisfies the requirement

of JL with high probability. To see this, suppose we define a matrix A = (a;;)1<i<p € RP *d where each a; j
1<j<d

is chosen from {-1, 1} uniformly at random. Then for any vector u € R, Au € R satisfies

d
Z(Au) = ZE

Therefore, if we choose f = %,thenE [||f(u)||2] = ||u||%. This implies that for any x,y € S, E [||f(x) - f(y)||2] =

E [||f(x - y)||2] = E [||x - y||2]. Hence to establish (1), we only need to prove that || f(u)||? is well-
concentrated to its expectation, namely
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for appropriate . Since f is linear, we can assume without loss of generality that ||u|| = 1.
Foreveryi =1,...,d, welet Z; = Laiju;. Then || f(w)]|? = % . Z?:l Zl.2. Now we can express our
objective as the sum of d 1ndependent random variables, so to obtain a concentration result, we might
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try to apply Chernoff-typed inequalities. However, it seems that we cannot directly apply the Hoeffding
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inequality here, since Zl.z = (ijl ajju j) can be unbounded. Therefore, we need some new tools to tackle

random variables of this form.

2 Sub-Gaussian Random Variables

Recall the proof of the Chernoff bounds and the Hoeffding inequality. The key to establish these inequali-
ties is an upper bound on the moment generating functions E [e“X ] We abstract the property and intro-
duce the notion of sub-Gaussian random variables.

Definition 2. A random variables X with E[X] = 0 is called sub-Gaussian with variance factor v, denoted
as X € G(v), if
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E[e®X] <eT? foreverya €R.

The name sub-Gaussian comes from the fact that for a Gaussian random variables X ~ N(0, v), it holds
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that E [e”‘X] =ezY,

The moment generating function of a random variables X is closely related to its k-the moment for all
k € N. The following theorem clarifies the relationship, and interested readers can refer to [1, Chapter 2]
for more on this.

Theorem 3. Let X be a random variable with E[X] = 0
(1) If X € G(v), then for every integerj > 1, E [ij] < 27tj1y)
(2) If for some positive constant v and for every integerj > 1, E [ij] < j"/, then X € G(4v)

Proof. We first prove (1). We can assume without loss of generality that X is a continuous random variable.
Assume X € G(v), then we have

E[x¥] = /OOOPr[|X|Zf > x| dx

2/ Pr[|X|2x2ij] dx
0
= Zj/ Pr{|X| > z]z¥ ' dz (z:xzij),
0
For any a > 0, we have
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We choose a = Z and obtain Pr[X > z] < e_%. Similarly, we can obtain Pr [X < —z] < e_%. Then
E [ij] < 4j/°o zzj_le_%dz
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We proceed to prove (2). Assume E [X 2 ] < j'/. To get rid of the odd moments of X, we introduce an
independent random variable X’ who follows the same distribution as X. Then by symmetry of X — X’ we
have
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For odd j, we have
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Since the function X — X% is convex, Jensen’s inequality yields
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(X + (=X")¥ =2¥ (EX + 5(—X’)) <2¥ (Exzf + 5X’ZJ) = 297N (XY 4+ X'Y).
So _ _
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Moreover, again by Jensen’s inequality, we know that
E [e‘“X,] > ¢ ?BXT = 1,
So -
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That is, X € G(4v). O



Given bounds on all moments, we have the following more general concentration inequality, known
as Bernstein’s inequality.

Theorem 4 (Bernstein’s inequality). Let X3, ..., X, be independent real-valued random variables. Assume
that there exist positive numbers a and b such that

(1) 1, E[X?] < a
2) Y, E [Xf] < é—!abj_2 for all integers q > 3
DefineX = 3", S = X — E[X], then for allt > 0, we have

Pr|S > Vaat +bt| < e

See [1] for a proof of the theorem.

3 Proof of Johnson-Lindenstrauss Lemma

We are now ready to prove Lemma 1. Following the discussion in Section 1, for everyi = 1,. .., d, we have
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Therefore, Z; € G(1). Let Y; = Zl.2. According to Theorem 3, we can obtain bounds on mements of Z; and
Yii

Vj>1:E [Zl.zj] < 2t
Vj>1:E [Ylj] <<
Vj>1:E [ij] < 2% ()1 < 294,

Finally we have
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We can let a = 16d and b = 4 in the Bernstein’s inequality (Theorem 4), which gives

d
Pr ZY,- —1>4Vodt +4t| < et
i=1

Applying union bound for every pair of x,y € S, it suffices to let n? - ™! < §. So we let 4V2dt + 4t = de
where ¢t = log %2 This requires d = © (5_12 log %)
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