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In this lecture, we prove the Johnson-Lindenstrauss Lemma, which is an important algorithmic applica-
tion of concentration inequalities. To this end, we introduce the notion of sub-Gaussian random variables
and the Bernstein’s inequality.

1 Johnson-Lindenstrauss Lemma

Given a collection of points in a high-dimensional space, one might try to map the points into a low-
dimensional space without distorting the relative distances between points very much. This problem is
called metric embedding in literature. The Johnson-Lindenstrauss lemma states that such an embedding
exists in certain case.

Lemma 1 (Johnson-Lindenstrauss Lemma). Let S be a collection of points set that S ⊆ RD . Then for every
ε ∈ (0, 1), there exists a projection f : RD → Rd with d = O

(
log(|S |/ε2)

)
such that ∀x ,y ∈ S,x ! y, it holds

that
1 − ε ≤ ‖ f (x) − f (y)‖

‖x − y‖ ≤ 1 + ε (1)

Note that in the statement of JL lemma, the dimension d is irrelevant to D. So D can be arbitrary large
or even infinite. It is surprising that a random linear projection from RD to Rd satisfies the requirement
of JL with high probability. To see this, suppose we define a matrix A = (ai j )1≤i≤D

1≤j≤d
∈ RD×d where each ai j

is chosen from {−1, 1} uniformly at random. Then for any vector u ∈ RD , Au ∈ Rd satisfies

E
[
‖Au‖2

]
= E

[
d∑
i=1

(Au)2i

]
=

d∑
i=1

E


(
D∑
j=1

ai j · uj

)2
= d · ‖u‖2.

Therefore, if we choose f = A√
d
, thenE

[
‖ f (u)‖2

]
= ‖u‖2. This implies that for anyx ,y ∈ S , E

[
‖ f (x) − f (y)‖2

]
=

E
[
‖ f (x − y)‖2

]
= E

[
‖x − y‖2

]
. Hence to establish (1), we only need to prove that ‖ f (u)‖2 is well-

concentrated to its expectation, namely

Pr
[
1 − ε ≤ ‖ f (u)‖2

‖u‖2 ≤ 1 + ε
]
≥ 1 − δ

for appropriate δ . Since f is linear, we can assume without loss of generality that ‖u‖ = 1.
For every i = 1, . . . ,d , we let Zi =

∑D
j=1 ai juj . Then ‖ f (u)‖2 = 1

d · ∑d
i=1 Z

2
i . Now we can express our

objective as the sum of d independent random variables, so to obtain a concentration result, we might
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try to apply Chernoff-typed inequalities. However, it seems that we cannot directly apply the Hoeffding

inequality here, since Z 2
i =

(∑D
j=1 ai juj

)2
can be unbounded. Therefore, we need some new tools to tackle

random variables of this form.

2 Sub-Gaussian Random Variables

Recall the proof of the Chernoff bounds and the Hoeffding inequality. The key to establish these inequali-
ties is an upper bound on the moment generating functions E

[
eαX

]
. We abstract the property and intro-

duce the notion of sub-Gaussian random variables.

Definition 2. A random variables X with E [X ] = 0 is called sub-Gaussian with variance factor v , denoted
as X ∈ G(v), if

E
[
eαX

]
≤ e

α 2
2 v for every α ∈ R.

The name sub-Gaussian comes from the fact that for a Gaussian random variablesX ∼ N (0,v), it holds
that E

[
eαX

]
= e

α 2
2 v .

The moment generating function of a random variables X is closely related to its k-the moment for all
k ∈ N. The following theorem clarifies the relationship, and interested readers can refer to [1, Chapter 2]
for more on this.

Theorem 3. Let X be a random variable with E [X ] = 0

(1) If X ∈ G(v), then for every integer j ≥ 1, E
[
X 2j ] ≤ 2j+1j!v j

(2) If for some positive constant v and for every integer j ≥ 1, E
[
X 2j ] ≤ j!v j , then X ∈ G(4v)

Proof. We first prove (1). We can assume without loss of generality thatX is a continuous random variable.
Assume X ∈ G(v), then we have

E
[
X 2j ] =

∫ ∞

0
Pr

[
|X |2j ≥ x

]
dx

=

∫ ∞

0
Pr

[
|X | ≥ x

1
2j
]
dx

= 2j
∫ ∞

0
Pr [|X | ≥ z] z2j−1 dz (z = x

1
2j ).

For any α > 0, we have

Pr [X > z] = Pr
[
eαX > eαz

]
≤

E
[
eαX

]
eαz

≤ e
α 2
2 v−αz .

We choose α = z
v and obtain Pr [X > z] ≤ e−

z2
2v . Similarly, we can obtain Pr [X < −z] ≤ e−

z2
2v . Then

E
[
X 2j ] ≤ 4j

∫ ∞

0
z2j−1e−

z2
2v dz

= 4j
∫ ∞

0
(2vt)j− 1

2e−td(2vt) 12 (t = − z2

2v
)

= 2j(2v)j
∫ ∞

0
t j−1e−tdt

= 2j+1j!v j .
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We proceed to prove (2). Assume E
[
X 2j ] ≤ j!v j . To get rid of the odd moments of X , we introduce an

independent random variable X ′ who follows the same distribution as X . Then by symmetry of X −X ′ we
have

E
[
eαX

]
E
[
e−αX

′
]
= E

[
eαXe−αX

′
]
= E

[
eα (X−X ′)

]
=

∞∑
j=0

α j · E
[
(X − X ′)j

]
j!

.

For odd j, we have

E
[
(X − X ′)j

]
=

j∑
k=0

(
j

k

)
E
[
X k

]
E
[
(−X ′)j−k

]

=

j∑
k=0

(−1)j−k ·
(
j

k

)
E
[
X k

]
E
[
X j−k

]

=

⌊j/2⌋∑
k=0

(
j

k

) ((
(−1)k + (−1)j−k

)
E
[
X k

]
E
[
X j−k

] )

= 0.

Therefore,

E
[
eαX

]
E
[
e−αX

′
]
=

∞∑
j=0

(α)2jE
[
(X − X ′)2j

]
(2j)! . (2)

Since the function X → X 2j is convex, Jensen’s inequality yields

(X + (−X ′))2j = 22j
(
1
2
X +

1
2
(−X ′)

)2j
≤ 22j

(
1
2
X 2j +

1
2
X ′2j

)
= 22j−1(X 2j + X ′2j ).

So
E
[
(X − X ′)2j

]
≤ 22j−1E

[
X 2j + X ′2j ] = 22jE

[
X 2j ] .

Since
(2j)!
j!
=

j∏
k=1

(j + k) ≥
j∏

k=1

2k = 2j j!,

we have

(2) =
∞∑
j=0

(α)2jE
[
(X − X ′)2j

]
(2j)! ≤

∞∑
j=0

(α)2j22jE
[
X 2j ]

(2j)! ≤
∞∑
j=0

(α)2j22je j j!
(2j)! ≤

∞∑
j=0

α2jv j2j

j!
.

Moreover, again by Jensen’s inequality, we know that

E
[
e−αX

′
]
≥ e−αE[X

′] = 1.

So

E
[
eαX

]
≤

∞∑
j=0

α2jv j2j

j!
= e2α

2v .

That is, X ∈ G(4v). □
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Given bounds on all moments, we have the following more general concentration inequality, known
as Bernstein’s inequality.

Theorem 4 (Bernstein’s inequality). Let X1, . . . ,Xn be independent real-valued random variables. Assume
that there exist positive numbers a and b such that

(1)
∑n

i=1 E
[
X 2
i

]
≤ a

(2)
∑n

i=1 E
[
X j
i

]
≤ j !

2 ab
j−2 for all integers q ≥ 3

Define X =
∑n

i=1, S = X − E [X ], then for all t > 0, we have

Pr
[
S ≥

√
2at + bt

]
≤ e−t .

See [1] for a proof of the theorem.

3 Proof of Johnson-Lindenstrauss Lemma

We are now ready to prove Lemma 1. Following the discussion in Section 1, for every i = 1, . . . ,d , we have

E
[
eαZi

]
= E

[
eα

!D
j=1 ai juj

]
=

D∏
j=1

E [eαai juj ] =
D∏
j=1

(
1
2
(eαuj + e−αuj )

)
.

Since
1
2
(eλ + e−λ) =

∞∑
j=0

λ2j

(2j)! ≤
∞∑
j=0

(λ)2j
2j j!

= e
λ2
2 ,

we have

E
[
eαZi

]
≤

D∏
j=1

e
α 2u2j

2 = e
α 2
2 .

Therefore, Zi ∈ G(1). Let Yi = Z 2
i . According to Theorem 3, we can obtain bounds on mements of Zi and

Yi :

∀j ≥ 1 :E
[
Z 2j
i

]
≤ 2j+1 · j!;

∀j ≥ 1 :E
[
Y j
i

]
≤ 2j+1 · j! ≤ 4j · j!;

∀j ≥ 1 :E
[
Y 2j
i

]
≤ 22j+1 · (2j)! ≤ 23j+1 · j!.

Finally we have

Pr
[
‖ f (u)‖2 − 1 > ε

]
= Pr

[
d∑
i=1

1
d
Yi − 1 > ε

]
= Pr

[
d∑
i=1

(Yi − 1) > εd

]
.
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We can let a = 16d and b = 4 in the Bernstein’s inequality (Theorem 4), which gives

Pr

[
d∑
i=1

Yi − 1 ≥ 4
√
2dt + 4t

]
≤ e−t .

Applying union bound for every pair of x ,y ∈ S , it suffices to let n2 · e−t ≤ δ . So we let 4
√
2dt + 4t = dε

where t = log n2

δ . This requires d = Θ
(
1
ε2 log

n√
δ

)
.
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