Advanced Algorithms VI (Fall 2020)

Instructor: Chihao Zhang Scribed by: Huaijin Wu, Tong Chen

Last modified on October 25, 2020

In this lecture, we prove the Johnson-Lindenstrauss Lemma, which is an important algorithmic application of concentration inequalities. To this end, we introduce the notion of sub-Gaussian random variables and the Bernstein's inequality.

Johnson-Lindenstrauss Lemma 1

Given a collection of points in a high-dimensional space, one might try to map the points into a lowdimensional space without distorting the relative distances between points very much. This problem is called *metric embedding* in literature. The Johnson-Lindenstrauss lemma states that such an embedding exists in certain case.

Lemma 1 (Johnson-Lindenstrauss Lemma). Let S be a collection of points set that $S \subseteq \mathbb{R}^D$. Then for every $\varepsilon \in (0, 1)$, there exists a projection $f : \mathbb{R}^D \to \mathbb{R}^d$ with $d = O(\log(|S|/\varepsilon^2))$ such that $\forall x, y \in S, x \neq y$, it holds that

$$1 - \varepsilon \le \frac{\|f(x) - f(y)\|}{\|x - y\|} \le 1 + \varepsilon \tag{1}$$

Note that in the statement of JL lemma, the dimension d is irrelevant to D. So D can be arbitrary large or even infinite. It is surprising that a *random* linear projection from \mathbb{R}^D to \mathbb{R}^d satisfies the requirement of JL with high probability. To see this, suppose we define a matrix $A = (a_{ij})_{1 \le i \le D} \in \mathbb{R}^{D \times d}$ where each a_{ij} is chosen from $\{-1, 1\}$ uniformly at random. Then for any vector $u \in \mathbb{R}^D$, $Au \in \mathbb{R}^d$ satisfies

$$\mathbf{E}\left[\|Au\|^2\right] = \mathbf{E}\left[\sum_{i=1}^d (Au)_i^2\right] = \sum_{i=1}^d \mathbf{E}\left[\left(\sum_{j=1}^D a_{ij} \cdot u_j\right)^2\right] = d \cdot \|u\|^2.$$

Therefore, if we choose $f = \frac{A}{\sqrt{d}}$, then $\mathbb{E}\left[\|f(u)\|^2\right] = \|u\|^2$. This implies that for any $x, y \in S$, $\mathbb{E}\left[\|f(x) - f(y)\|^2\right] = \|u\|^2$. $\mathbf{E}\left[\|f(x-y)\|^2\right] = \mathbf{E}\left[\|x-y\|^2\right]$. Hence to establish (1), we only need to prove that $\|f(u)\|^2$ is wellconcentrated to its expectation, namely

$$\Pr\left[1-\varepsilon \leq \frac{\|f(u)\|^2}{\|u\|^2} \leq 1+\varepsilon\right] \geq 1-\delta$$

for appropriate δ . Since *f* is linear, we can assume without loss of generality that ||u|| = 1.

For every i = 1, ..., d, we let $Z_i = \sum_{j=1}^{D} a_{ij}u_j$. Then $||f(u)||^2 = \frac{1}{d} \cdot \sum_{i=1}^{d} Z_i^2$. Now we can express our objective as the sum of d independent random variables, so to obtain a concentration result, we might

try to apply Chernoff-typed inequalities. However, it seems that we cannot directly apply the Hoeffding inequality here, since $Z_i^2 = \left(\sum_{j=1}^D a_{ij}u_j\right)^2$ can be unbounded. Therefore, we need some new tools to tackle random variables of this form.

2 Sub-Gaussian Random Variables

Recall the proof of the Chernoff bounds and the Hoeffding inequality. The key to establish these inequalities is an upper bound on the moment generating functions $E\left[e^{\alpha X}\right]$. We abstract the property and introduce the notion of *sub-Gaussian* random variables.

Definition 2. A random variables X with E[X] = 0 is called sub-Gaussian with variance factor v, denoted as $X \in \mathcal{G}(v)$, if

$$\mathbf{E}\left[e^{\alpha X}\right] \leq e^{\frac{\alpha^2}{2}v} \quad \text{for every } \alpha \in \mathbb{R}.$$

The name *sub-Gaussian* comes from the fact that for a Gaussian random variables $X \sim N(0, v)$, it holds that $\mathbf{E}\left[e^{\alpha X}\right] = e^{\frac{\alpha^2}{2}v}$.

The moment generating function of a random variables X is closely related to its k-the moment for all $k \in \mathbb{N}$. The following theorem clarifies the relationship, and interested readers can refer to [1, Chapter 2] for more on this.

Theorem 3. Let X be a random variable with E[X] = 0

(1) If
$$X \in \mathcal{G}(v)$$
, then for every integer $j \ge 1$, $\mathbb{E}\left[X^{2j}\right] \le 2^{j+1}j!v^j$

(2) If for some positive constant v and for every integer $j \ge 1$, $\mathbf{E}\left[X^{2j}\right] \le j!v^{j}$, then $X \in \mathcal{G}(4v)$

Proof. We first prove (1). We can assume without loss of generality that *X* is a continuous random variable. Assume $X \in \mathcal{G}(v)$, then we have

$$\mathbf{E} \left[X^{2j} \right] = \int_0^\infty \mathbf{Pr} \left[|X|^{2j} \ge x \right] dx$$

=
$$\int_0^\infty \mathbf{Pr} \left[|X| \ge x^{\frac{1}{2j}} \right] dx$$

=
$$2j \int_0^\infty \mathbf{Pr} \left[|X| \ge z \right] z^{2j-1} dz \quad (z = x^{\frac{1}{2j}}).$$

For any $\alpha > 0$, we have

$$\Pr\left[X > z\right] = \Pr\left[e^{\alpha X} > e^{\alpha z}\right] \le \frac{\operatorname{E}\left[e^{\alpha X}\right]}{e^{\alpha z}} \le e^{\frac{\alpha^2}{2}v - \alpha z}$$

We choose $\alpha = \frac{z}{v}$ and obtain $\Pr[X > z] \le e^{-\frac{z^2}{2v}}$. Similarly, we can obtain $\Pr[X < -z] \le e^{-\frac{z^2}{2v}}$. Then

$$\mathbb{E} \left[X^{2j} \right] \le 4j \int_0^\infty z^{2j-1} e^{-\frac{z^2}{2v}} dz$$

$$= 4j \int_0^\infty (2vt)^{j-\frac{1}{2}} e^{-t} d(2vt)^{\frac{1}{2}} \quad (t = -\frac{z^2}{2v})$$

$$= 2j(2v)^j \int_0^\infty t^{j-1} e^{-t} dt$$

$$= 2^{j+1} j! v^j.$$

We proceed to prove (2). Assume $\mathbb{E}[X^{2j}] \leq j! v^j$. To get rid of the odd moments of *X*, we introduce an independent random variable *X'* who follows the same distribution as *X*. Then by symmetry of X - X' we have

$$\mathbf{E}\left[e^{\alpha X}\right]\mathbf{E}\left[e^{-\alpha X'}\right] = \mathbf{E}\left[e^{\alpha X}e^{-\alpha X'}\right] = \mathbf{E}\left[e^{\alpha(X-X')}\right] = \sum_{j=0}^{\infty} \frac{\alpha^j \cdot \mathbf{E}\left[(X-X')^j\right]}{j!}.$$

For odd *j*, we have

$$\mathbf{E}\left[(X - X')^{j}\right] = \sum_{k=0}^{j} {\binom{j}{k}} \mathbf{E}\left[X^{k}\right] \mathbf{E}\left[(-X')^{j-k}\right]$$
$$= \sum_{k=0}^{j} (-1)^{j-k} \cdot {\binom{j}{k}} \mathbf{E}\left[X^{k}\right] \mathbf{E}\left[X^{j-k}\right]$$
$$= \sum_{k=0}^{\lfloor j/2 \rfloor} {\binom{j}{k}} \left(\left((-1)^{k} + (-1)^{j-k}\right) \mathbf{E}\left[X^{k}\right] \mathbf{E}\left[X^{j-k}\right]\right)$$
$$= 0.$$

Therefore,

$$\mathbf{E}\left[e^{\alpha X}\right]\mathbf{E}\left[e^{-\alpha X'}\right] = \sum_{j=0}^{\infty} \frac{(\alpha)^{2j} \mathbf{E}\left[(X - X')^{2j}\right]}{(2j)!}.$$
(2)

Since the function $X \to X^{2j}$ is convex, Jensen's inequality yields

$$(X + (-X'))^{2j} = 2^{2j} \left(\frac{1}{2}X + \frac{1}{2}(-X')\right)^{2j} \le 2^{2j} \left(\frac{1}{2}X^{2j} + \frac{1}{2}X'^{2j}\right) = 2^{2j-1}(X^{2j} + X'^{2j}).$$

So

$$\mathbf{E}\left[(X - X')^{2j}\right] \le 2^{2j-1}\mathbf{E}\left[X^{2j} + X'^{2j}\right] = 2^{2j}\mathbf{E}\left[X^{2j}\right].$$

Since

$$\frac{(2j)!}{j!} = \prod_{k=1}^{j} (j+k) \ge \prod_{k=1}^{j} 2k = 2^{j} j!,$$

we have

$$(2) = \sum_{j=0}^{\infty} \frac{(\alpha)^{2j} \mathbf{E} \left[(X - X')^{2j} \right]}{(2j)!} \le \sum_{j=0}^{\infty} \frac{(\alpha)^{2j} 2^{2j} \mathbf{E} \left[X^{2j} \right]}{(2j)!} \le \sum_{j=0}^{\infty} \frac{(\alpha)^{2j} 2^{2j} e^{j} j!}{(2j)!} \le \sum_{j=0}^{\infty} \frac{\alpha^{2j} v^{j} 2^{j}}{j!}.$$

Moreover, again by Jensen's inequality, we know that

$$\mathbf{E}\left[e^{-\alpha X'}\right] \geq e^{-\alpha \mathbf{E}[X']} = 1.$$

So

$$\mathbf{E}\left[e^{\alpha X}\right] \leq \sum_{j=0}^{\infty} \frac{\alpha^{2j} \upsilon^{j} 2^{j}}{j!} = e^{2\alpha^{2} \upsilon}.$$

That is, $X \in \mathcal{G}(4v)$.

Given bounds on all moments, we have the following more general concentration inequality, known as *Bernstein's inequality*.

Theorem 4 (Bernstein's inequality). Let X_1, \ldots, X_n be independent real-valued random variables. Assume that there exist positive numbers a and b such that

(1) $\sum_{i=1}^{n} \mathbf{E} \left[X_{i}^{2} \right] \leq a$ (2) $\sum_{i=1}^{n} \mathbf{E} \left[X_{i}^{j} \right] \leq \frac{j!}{2} a b^{j-2}$ for all integers $q \geq 3$

Define $X = \sum_{i=1}^{n} S = X - \mathbf{E}[X]$, then for all t > 0, we have

$$\Pr\left[S \ge \sqrt{2at} + bt\right] \le e^{-t}.$$

See [1] for a proof of the theorem.

3 Proof of Johnson-Lindenstrauss Lemma

We are now ready to prove Lemma 1. Following the discussion in Section 1, for every i = 1, ..., d, we have

$$\mathbf{E}\left[e^{\alpha Z_{i}}\right] = \mathbf{E}\left[e^{\alpha \sum_{j=1}^{D} a_{ij}u_{j}}\right] = \prod_{j=1}^{D} \mathbf{E}\left[e^{\alpha a_{ij}u_{j}}\right] = \prod_{j=1}^{D}\left(\frac{1}{2}\left(e^{\alpha u_{j}} + e^{-\alpha u_{j}}\right)\right).$$

Since

$$\frac{1}{2}(e^{\lambda} + e^{-\lambda}) = \sum_{j=0}^{\infty} \frac{\lambda^{2j}}{(2j)!} \le \sum_{j=0}^{\infty} \frac{(\lambda)^{2j}}{2^j j!} = e^{\frac{\lambda^2}{2}},$$

we have

$$\mathbb{E}\left[e^{\alpha Z_{i}}\right] \leq \prod_{j=1}^{D} e^{\frac{\alpha^{2} u_{j}^{2}}{2}} = e^{\frac{\alpha^{2}}{2}}.$$

Therefore, $Z_i \in \mathcal{G}(1)$. Let $Y_i = Z_i^2$. According to Theorem 3, we can obtain bounds on mements of Z_i and Y_i :

$$\begin{aligned} \forall j \geq 1 : \mathbf{E} \left[Z_i^{2j} \right] &\leq 2^{j+1} \cdot j!; \\ \forall j \geq 1 : \mathbf{E} \left[Y_i^j \right] &\leq 2^{j+1} \cdot j! \leq 4^j \cdot j!; \\ \forall j \geq 1 : \mathbf{E} \left[Y_i^{2j} \right] &\leq 2^{2j+1} \cdot (2j)! \leq 2^{3j+1} \cdot j!. \end{aligned}$$

Finally we have

$$\Pr\left[\|f(u)\|^2 - 1 > \varepsilon\right] = \Pr\left[\sum_{i=1}^d \frac{1}{d}Y_i - 1 > \varepsilon\right] = \Pr\left[\sum_{i=1}^d (Y_i - 1) > \varepsilon d\right].$$

We can let a = 16d and b = 4 in the Bernstein's inequality (Theorem 4), which gives

$$\Pr\left[\sum_{i=1}^{d} Y_i - 1 \ge 4\sqrt{2dt} + 4t\right] \le e^{-t}.$$

Applying union bound for every pair of $x, y \in S$, it suffices to let $n^2 \cdot e^{-t} \leq \delta$. So we let $4\sqrt{2dt} + 4t = d\varepsilon$ where $t = \log \frac{n^2}{\delta}$. This requires $d = \Theta\left(\frac{1}{\varepsilon^2}\log \frac{n}{\sqrt{\delta}}\right)$.

References

[1] S. BOUCHERON, G. LUGOSI, AND P. MASSART, Concentration inequalities: A nonasymptotic theory of independence, 2013. 2, 4