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Starting from this lecture, we shall introduce the Chernoff-typed inequalities and their applications.
Today we will talk about the vanilla Chernoff bound and the Hoeffding’s inequality.

1 Chernoff-typed Bounds

1.1 Concentration inequalities

A concentration inequality is an upper bound on

Pr [|X − E [X ]| ≥ t] .

On way to obtain a sharper bound is to choose certain non-decreasing function f and apply it on both
sides of the inequality:

Pr [|X − E [X ]| ≥ t] = Pr [f (|X − E [X ] |) ≥ f (t)] .

Then by Markov’s inequality,

Pr [|X − E [X ]| ≥ t] = Pr [f (|X − E [X ] |) ≥ f (t)] ≤ E [f (|X − E [X ]|)]
f (t) .

For example, if we choose f (x) = x2, the inequality becomes to

Pr [|X − E [X ] | ≥ t] ≤
E
!
(X − E [X ])2

"
t2

=
Var [X ]

t2
,

which is exactly the Chebyshev’s inequality. It is natural to apply f (x) = eαx for α > 0 so that we can
relate the upper bound to the moment generating function E

!
eαX

"
of X . In cases that E

!
eαX

"
is easy to

estimate, we obtain sharper concentration.

1.2 Vanilla Chernoff Bound

When the random variable X can be written as the sum of independent Bernoulli variables, its moment
generating function is easy to estimate.
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Theorem 1. Let X1, . . . ,Xn be independent random variables such that Xi ∼ Ber(pi ) for each i = 1, 2, . . . ,n.
Let X =

#n
i=1Xi and denote µ ≜ E [X ] = #n

i=1 pi , we have

Pr [X ≥ (1 + δ )µ] ≤
$

eδ

(1 + δ )1+δ

% µ
(1)

If 0 < δ < 1, then we have

Pr [X ≤ (1 − δ )µ] ≤
$

e−δ

(1 − δ )1−δ

% µ
(2)

Proof. We only prove (1) and the proof of (2) is similar. For every α > 0, we have

Pr [X ≥ (1 + δ )µ] = Pr
&
eαX ≥ eα (1+δ )µ

'
≤

E
!
eαX

"
eα (1+δ )µ

. (3)

Therefore, we need to estimate the moment generating function E
!
eαX

"
. Since X =

#n
i=1Xi is the sum of

independent Bernoulli variables, we have

E
!
eαX

"
= E

&
eα

!n
i=1 Xi

'
= E

(
n)
i=1

eαXi

*
=

n)
i=1

E
!
eαXi

"
.

Since Xi ∼ Ber(pi ), we can compute E
!
eαXi

"
directly:

E
!
eαXi

"
= pie

α + (1 − pi ) = 1 + (eα − 1)pi ≤ exp ((eα − 1)pi ) .

Therefore,

E
!
eαX

"
≤

n)
i=1

exp ((eα − 1)pi ) = exp

+
(eα − 1)

n,
i=1

pi

-
= exp ((eα − 1)µ). (4)

Plugging into (3), we obtain

Pr [X ≤ (1 + δ )µ] ≤ E [eαx ]
eα (1+δ )µ

≤
$
exp (eα − 1)
exp (α(1 + δ ))

% µ
(5)

Note that (5) holds for any α > 0. Therefore, we would like to choose α so as to minimize exp (eα−1)
exp (α (1+δ )) . To

this end, we let
$
exp (eα − 1)
exp (α(1 + δ ))

% ′
= exp (eα − 1 − α − αδ ) · (eα − 1 − δ ) = 0.

This gives α = log(1 + δ ). Therefore

Pr [X ≤ (1 + δ )µ] ≤
$
exp (eα − 1)
exp (α(1 + δ ))

% µ
=

$
eδ

(1 + δ )(1+δ )

% µ
.

□

The following form of Chernoff bound is more convenient to use (but weaker):
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Corollary 2. For any 0 < δ < 1,

Pr [X ≥ (1 + δ )µ] ≤ exp
$
−δ

2

3
µ

%
(6)

Pr [X ≤ (1 − δ )µ] ≤ exp
$
−δ

2

2
µ

%
(7)

Proof. We only prove (6). It suffices to verify that for 0 < δ < 1, we have

eδ

(1 + δ )(1+δ )
≤ exp

$
−δ

2

3

%

Taking logarithm of both sides, this is equivalent to

δ − (1 + δ ) ln(1 + δ ) ≤ −δ
2

3

Let f (δ ) = δ − (1 + δ ) ln(1 + δ ) + δ 2

3 and note that

f ′(δ ) = − ln(1 + δ ) + 2
3
δ , f ′′(δ ) = − 1

1 + δ
+
2
3
.

Then for 0 < δ < 1/2, f ′′(δ ) < 0, and for 1/2 < δ < 1, f ′′(δ ) > 0. Therefore, f ′(δ ) first decrease and
then increase in [0, 1]. Also note that f ′(0) = 0, f ′(1) < 0 and f ′(δ ) ≤ 0 when 0 ≤ δ ≤ 1. Therefore
f (δ ) ≤ f (0) = 0 and (6) holds. □

1.3 Application: Tossing Fair Coins

If we toss a fair coin n times, the average number of heads is n/2. We want to determine the value δ such
that with high probability (say 99%), the total number of heads is in the interval of [(1−δ )n2 , (1+δ )

n
2 ]. We

use Chernoff bound to determine δ .
Let X denote the total number of heads, and Xi ∼ Ber

. 1
2
/
be the indicator of whether the i-th toss

gives a head. Then by Chernoff bound, we have

Pr
&000X − n

2

000 ≥ δ · n
2

'
≤ 2 exp

$
δ 2

3
· n
2

%
≤ 0.01

So it suffices to choose
δ = Ω

$
1
√
n

%

1.4 Hoeffding’s Inequality

One of annoying restrictions of Chernoff bound is that each Xi needs to be a Bernoulli random variable.
Hoeffding’s inequality generalizes Chernoff bound by allowing Xi to follow any distribution, provided its
value is almost surely bounded.
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Theorem 3 (Hoeffding’s inequality). Let X1, . . . ,Xn be independent random variables where each Xi ∈
[ai ,bi ]1 for certain ai ≤ bi . Assume E [Xi ] = pi for every 1 ≤ i ≤ n. LetX =

#n
i=1Xi and µ ≜ E [X ] = #n

i=1 pi ,
then

Pr [|X − µ | ≥ t] ≤ 2 exp
$
− 2t2#n

i=1(bi − ai )2

%

for all t ≥ 0.

We learnt from the proof of the Chernoff bound that the key to establish concentration inequalities of
this form is to obtain a nice upper bound on the moment generating function. Therefore, the following
Hoeffding’s lemma will be the main technical ingredient to prove Theorem 3.

Lemma 4 (Hoeffding’s lemma). LetX be a random variable with E [X ] = 0 andX ∈ [a,b]. Then it holds that

E
!
eαX

"
≤ exp

$
α2(b − a)2

8

%
for all α ∈ R

Proof. We first find a linear function to upper bound eαx so that we could apply the linearity of expectation
to bound E

!
eαX

"
. By the convexity of the exponential function (Figure 1), we have

eαx ≤ eαb − eαa

b − a
(x − a) + eαa , for all a ≤ x ≤ b

x

y

y = eαx

A

a

B

b

l : y−e
αa

x−a =
eαb−eαa

b−a
P

x

Figure 1: Bound eαx by a linear function

Thus,

E [eαx ] ≤ eαb − eαa

b − a
(−a) + eαa = −a

b − a
eαb +

b

b − a
eαa

= eαa
$

b

b − a
− a

b − a
eα (b−a)

%

= e−θ t (1 − θ + θet ) (θ = − a

b − a
, t = α(b − a))

△
= eд(t ),

1In fact, Pr [Xi ∈ [ai ,bi ]] = 1 suffices.
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where
д(t) = −θt + log(1 − θ + θet )

By Taylor’s theorem, for every real t there exists a δ between 0 and t such that,

д(t) = д(0) + tд′(0) + 1
2
д′′(δ )t2

Note that,

д(0) = 0;

д′(0) = −θ + θet

1 − θ + θet

0000
t=0

= 0;

д′′(δ ) = θet (1 − θ + θet ) − θet

(1 − θ + θet )2

=
(1 − θ )θet

(1 − θ + θet )2

=
(1 − θ )θ

θ 2z + 2(1 − θ )θ + (1−θ )2
z

(z = et )

≤ (1 − θ )θ
2θ (1 − θ ) + 2(1 − θ )θ (z > 0)

=
1
4
.

Thus
д(t) ≤ 0 + t · 0 + 1

2
t2 · 1

4
=

1
8
t2 =

1
8
α2(b − a)2

Therefore, E [eαx ] ≤ exp
1
α 2(b−a)2

8

2
holds. □

Armed with Hoeffding’s lemma, it is routine to prove Hoeffding’s inequality.

Proof of Theorem 3. First note that we can assume E [Xi ] = 0 and therefore µ = 0 (if not so, replace Xi by
Xi − E [Xi ]). By symmetry, we only need to prove that Pr [X ≥ t] ≤ exp

1
− 2t 2!n

i=1(bi−ai )2
2
. Since

Pr [X ≥ t] α>0= Pr
!
eαX ≥ eα t

"
≤

E
!
eαX

"
eα t

and

E
!
eαX

"
= E

&
eα

!n
i=1Xi

'
=

n)
i=1

E
!
eαXi

"
.

Applying Hoeffding’s lemma for each E
!
eαXi

"
yields

E
!
eαXi

"
≤ exp

$
−α

2(bi − ai )2
8

%
.
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Let α = 4t!n
i=1(bi−ai )2

, we have,

Pr [X ≥ t] ≤
3n

i=1 E
!
eαXi

"
eα t

≤ exp

+
−αt + α2

8

n,
i=1

(bi − ai )2
-
= exp

$
− 2t2#n

i=1(bi − ai )2

%

□

1.5 Comparing Chernoff Bound and Hoeffding’s Inequality

It is instructive to compare Hoeffding and Chernoff when Xi ’s are independent Bernoulli variables. For-
mally, let X1, . . . ,Xn be i.i.d. random variables where Xi ∼ Ber(p) for all i = 1, . . . ,n. Set X =

#n
i=1Xi and

denote E [X ] = np by µ. For t = δµ, by Hoeffding’s Inequality, we have

Pr [|X − µ | ≥ t] ≤ 2 exp
.
−2δ 2p2n

/
.

By Chernoff Bound, we have

Pr [|X − µ | ≥ t] ≤ 2 exp
$
−1
3
δ 2pn

%
.

Comparing the exponent, it is easy to see that for some constant p like p = 1/2, Hoeffding’s inequality is
tighter up to certain constant factor. However, when p is close to 0, Chernoff bound is significantly better
than Hoeffding’s inequality, as its dependency to p is linear.

The following simple example demonstrates the difference. Suppose we have a box of N balls. Among
them pN are red and (1 − p)N are blue. We draw a random ball from this box, record its color and put
it back. The problem is in how many rounds we are sure about the value p̂ (which is the percentage of
red balls we record) we guess is within the range (1 ± 0.01)p. The rounds required is Ω(1/p) if we apply
Chernoff bound, and Ω(1/p2) if we apply Hoeffding’s inequality.

References

6


