Advanced Algorithms V (Fall 2020)

Instructor: Chihao Zhang Scribed by: Jiaxin Lu, Yi Wang

Last modified on Oct 16, 2020

Starting from this lecture, we shall introduce the Chernoff-typed inequalities and their applications. Today we will talk about the vanilla Chernoff bound and the Hoeffding's inequality.

1 Chernoff-typed Bounds

1.1 Concentration inequalities

A concentration inequality is an upper bound on

$$\Pr\left[|X - \mathbb{E}\left[X\right]| \ge t\right].$$

On way to obtain a sharper bound is to choose certain non-decreasing function f and apply it on both sides of the inequality:

$$\Pr[|X - \mathbf{E}[X]| \ge t] = \Pr[f(|X - \mathbf{E}[X]|) \ge f(t)].$$

Then by Markov's inequality,

$$\Pr[|X - E[X]| \ge t] = \Pr[f(|X - E[X]|) \ge f(t)] \le \frac{E[f(|X - E[X]|)]}{f(t)}.$$

For example, if we choose $f(x) = x^2$, the inequality becomes to

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2} = \frac{Var[X]}{t^2},$$

which is exactly the Chebyshev's inequality. It is natural to apply $f(x) = e^{\alpha x}$ for $\alpha > 0$ so that we can relate the upper bound to the moment generating function $\mathbf{E}\left[e^{\alpha X}\right]$ of *X*. In cases that $\mathbf{E}\left[e^{\alpha X}\right]$ is easy to estimate, we obtain sharper concentration.

1.2 Vanilla Chernoff Bound

When the random variable X can be written as the sum of independent Bernoulli variables, its moment generating function is easy to estimate.

Theorem 1. Let X_1, \ldots, X_n be independent random variables such that $X_i \sim \text{Ber}(p_i)$ for each $i = 1, 2, \ldots, n$. Let $X = \sum_{i=1}^n X_i$ and denote $\mu \triangleq \mathbb{E}[X] = \sum_{i=1}^n p_i$, we have

$$\Pr\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \tag{1}$$

If $0 < \delta < 1$, then we have

$$\Pr\left[X \le (1-\delta)\mu\right] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$$
(2)

Proof. We only prove (1) and the proof of (2) is similar. For every $\alpha > 0$, we have

$$\Pr\left[X \ge (1+\delta)\mu\right] = \Pr\left[e^{\alpha X} \ge e^{\alpha(1+\delta)\mu}\right] \le \frac{\operatorname{E}\left[e^{\alpha X}\right]}{e^{\alpha(1+\delta)\mu}}.$$
(3)

Therefore, we need to estimate the moment generating function $\mathbf{E}\left[e^{\alpha X}\right]$. Since $X = \sum_{i=1}^{n} X_i$ is the sum of independent Bernoulli variables, we have

$$\mathbf{E}\left[e^{\alpha X}\right] = \mathbf{E}\left[e^{\alpha \sum_{i=1}^{n} X_{i}}\right] = \mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha X_{i}}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{\alpha X_{i}}\right].$$

Since $X_i \sim \text{Ber}(p_i)$, we can compute $\mathbb{E}\left[e^{\alpha X_i}\right]$ directly:

$$\mathbb{E}\left[e^{\alpha X_{i}}\right] = p_{i}e^{\alpha} + (1-p_{i}) = 1 + (e^{\alpha}-1)p_{i} \le \exp\left((e^{\alpha}-1)p_{i}\right).$$

Therefore,

$$\mathbb{E}\left[e^{\alpha X}\right] \leq \prod_{i=1}^{n} \exp\left((e^{\alpha} - 1)p_i\right) = \exp\left((e^{\alpha} - 1)\sum_{i=1}^{n} p_i\right) = \exp\left((e^{\alpha} - 1)\mu\right).$$
(4)

Plugging into (3), we obtain

$$\Pr\left[X \le (1+\delta)\mu\right] \le \frac{\mathbb{E}\left[e^{\alpha x}\right]}{e^{\alpha(1+\delta)\mu}} \le \left(\frac{\exp\left(e^{\alpha}-1\right)}{\exp\left(\alpha(1+\delta)\right)}\right)^{\mu}$$
(5)

Note that (5) holds for any $\alpha > 0$. Therefore, we would like to choose α so as to minimize $\frac{\exp(e^{\alpha}-1)}{\exp(\alpha(1+\delta))}$. To this end, we let

$$\left(\frac{\exp\left(e^{\alpha}-1\right)}{\exp\left(\alpha(1+\delta)\right)}\right)' = \exp\left(e^{\alpha}-1-\alpha-\alpha\delta\right)\cdot\left(e^{\alpha}-1-\delta\right) = 0.$$

This gives $\alpha = \log(1 + \delta)$. Therefore

$$\Pr\left[X \le (1+\delta)\mu\right] \le \left(\frac{\exp\left(e^{\alpha}-1\right)}{\exp\left(\alpha(1+\delta)\right)}\right)^{\mu} = \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

The following form of Chernoff bound is more convenient to use (but weaker):

Corollary 2. For any $0 < \delta < 1$,

$$\Pr\left[X \ge (1+\delta)\mu\right] \le \exp\left(-\frac{\delta^2}{3}\mu\right) \tag{6}$$

$$\Pr\left[X \le (1-\delta)\mu\right] \le \exp\left(-\frac{\delta^2}{2}\mu\right) \tag{7}$$

Proof. We only prove (6). It suffices to verify that for $0 < \delta < 1$, we have

$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \le \exp\left(-\frac{\delta^2}{3}\right)$$

Taking logarithm of both sides, this is equivalent to

$$\delta - (1+\delta)\ln(1+\delta) \le -\frac{\delta^2}{3}$$

Let $f(\delta) = \delta - (1 + \delta) \ln(1 + \delta) + \frac{\delta^2}{3}$ and note that

$$f'(\delta) = -\ln(1+\delta) + \frac{2}{3}\delta, \quad f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3}.$$

Then for $0 < \delta < 1/2$, $f''(\delta) < 0$, and for $1/2 < \delta < 1$, $f''(\delta) > 0$. Therefore, $f'(\delta)$ first decrease and then increase in [0, 1]. Also note that f'(0) = 0, f'(1) < 0 and $f'(\delta) \le 0$ when $0 \le \delta \le 1$. Therefore $f(\delta) \le f(0) = 0$ and (6) holds.

1.3 Application: Tossing Fair Coins

If we toss a fair coin *n* times, the average number of heads is n/2. We want to determine the value δ such that with high probability (say 99%), the total number of heads is in the interval of $[(1 - \delta)\frac{n}{2}, (1 + \delta)\frac{n}{2}]$. We use Chernoff bound to determine δ .

Let X denote the total number of heads, and $X_i \sim \text{Ber}\left(\frac{1}{2}\right)$ be the indicator of whether the *i*-th toss gives a head. Then by Chernoff bound, we have

$$\Pr\left[\left|X - \frac{n}{2}\right| \ge \delta \cdot \frac{n}{2}\right] \le 2 \exp\left(\frac{\delta^2}{3} \cdot \frac{n}{2}\right) \le 0.01$$

So it suffices to choose

$$\delta = \Omega\left(\frac{1}{\sqrt{n}}\right)$$

1.4 Hoeffding's Inequality

One of annoying restrictions of Chernoff bound is that each X_i needs to be a Bernoulli random variable. Hoeffding's inequality generalizes Chernoff bound by allowing X_i to follow any distribution, provided its value is almost surely bounded. **Theorem 3** (Hoeffding's inequality). Let X_1, \ldots, X_n be independent random variables where each $X_i \in [a_i, b_i]^1$ for certain $a_i \leq b_i$. Assume $\mathbb{E}[X_i] = p_i$ for every $1 \leq i \leq n$. Let $X = \sum_{i=1}^n X_i$ and $\mu \triangleq \mathbb{E}[X] = \sum_{i=1}^n p_i$, then

$$\Pr\left[|X - \mu| \ge t\right] \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

for all $t \ge 0$.

We learnt from the proof of the Chernoff bound that the key to establish concentration inequalities of this form is to obtain a nice upper bound on the moment generating function. Therefore, the following Hoeffding's lemma will be the main technical ingredient to prove Theorem 3.

Lemma 4 (Hoeffding's lemma). Let X be a random variable with E[X] = 0 and $X \in [a, b]$. Then it holds that

$$\mathbb{E}\left[e^{\alpha X}\right] \leq \exp\left(\frac{\alpha^2(b-a)^2}{8}\right) \text{ for all } \alpha \in \mathbb{R}$$

Proof. We first find a linear function to upper bound $e^{\alpha x}$ so that we could apply the linearity of expectation to bound $E\left[e^{\alpha X}\right]$. By the convexity of the exponential function (Figure 1), we have

$$e^{\alpha x} \le \frac{e^{\alpha b} - e^{\alpha a}}{b - a}(x - a) + e^{\alpha a}, \text{ for all } a \le x \le b$$

Figure 1: Bound $e^{\alpha x}$ by a linear function

Thus,

¹In fact, $\Pr[X_i \in [a_i, b_i]] = 1$ suffices.

where

$$g(t) = -\theta t + \log(1 - \theta + \theta e^t)$$

By Taylor's theorem, for every real t there exists a δ between 0 and t such that,

$$g(t) = g(0) + tg'(0) + \frac{1}{2}g''(\delta)t^2$$

Note that,

$$\begin{split} g(0) &= 0; \\ g'(0) &= -\theta + \frac{\theta e^t}{1 - \theta + \theta e^t} \Big|_{t=0} \\ &= 0; \\ g''(\delta) &= \frac{\theta e^t (1 - \theta + \theta e^t) - \theta e^t}{(1 - \theta + \theta e^t)^2} \\ &= \frac{(1 - \theta)\theta e^t}{(1 - \theta + \theta e^t)^2} \\ &= \frac{(1 - \theta)\theta}{\theta^2 z + 2(1 - \theta)\theta + \frac{(1 - \theta)^2}{z}} \qquad (z = e^t) \\ &\leq \frac{(1 - \theta)\theta}{2\theta(1 - \theta) + 2(1 - \theta)\theta} \\ &= \frac{1}{4}. \end{split}$$

Thus

$$g(t) \le 0 + t \cdot 0 + \frac{1}{2}t^2 \cdot \frac{1}{4} = \frac{1}{8}t^2 = \frac{1}{8}\alpha^2(b-a)^2$$

$$\frac{b-a^2}{2} \text{ holds.}$$

Therefore, $\mathbf{E}[e^{\alpha x}] \leq \exp\left(\frac{\alpha^2(b-a)^2}{8}\right)$ holds.

Armed with Hoeffding's lemma, it is routine to prove Hoeffding's inequality.

Proof of Theorem 3. First note that we can assume $\mathbf{E}[X_i] = 0$ and therefore $\mu = 0$ (if not so, replace X_i by $X_i - \mathbf{E}[X_i]$). By symmetry, we only need to prove that $\Pr[X \ge t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$. Since

$$\Pr\left[X \ge t\right] \stackrel{\alpha > 0}{=} \Pr\left[e^{\alpha X} \ge e^{\alpha t}\right] \le \frac{\operatorname{E}\left[e^{\alpha X}\right]}{e^{\alpha t}}$$

and

$$\mathbf{E}\left[e^{\alpha X}\right] = \mathbf{E}\left[e^{\alpha \sum_{i=1}^{n} X_{i}}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{\alpha X_{i}}\right].$$

Applying Hoeffding's lemma for each $\mathbf{E}\left[e^{\alpha X_{i}}\right]$ yields

$$\operatorname{E}\left[e^{\alpha X_{i}}\right] \leq \exp\left(-\frac{\alpha^{2}(b_{i}-a_{i})^{2}}{8}\right).$$

Let $\alpha = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$, we have,

$$\Pr\left[X \ge t\right] \le \frac{\prod_{i=1}^{n} \mathbb{E}\left[e^{\alpha X_i}\right]}{e^{\alpha t}} \le \exp\left(-\alpha t + \frac{\alpha^2}{8} \sum_{i=1}^{n} (b_i - a_i)^2\right) = \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

1.5 Comparing Chernoff Bound and Hoeffding's Inequality

It is instructive to compare Hoeffding and Chernoff when X_i 's are independent Bernoulli variables. Formally, let X_1, \ldots, X_n be i.i.d. random variables where $X_i \sim \text{Ber}(p)$ for all $i = 1, \ldots, n$. Set $X = \sum_{i=1}^n X_i$ and denote $\mathbb{E}[X] = np$ by μ . For $t = \delta \mu$, by Hoeffding's Inequality, we have

$$\Pr\left[|X - \mu| \ge t\right] \le 2\exp\left(-2\delta^2 p^2 n\right).$$

By Chernoff Bound, we have

$$\Pr\left[|X - \mu| \ge t\right] \le 2 \exp\left(-\frac{1}{3}\delta^2 pn\right).$$

Comparing the exponent, it is easy to see that for some constant p like p = 1/2, Hoeffding's inequality is tighter up to certain constant factor. However, when p is close to 0, Chernoff bound is significantly better than Hoeffding's inequality, as its dependency to p is linear.

The following simple example demonstrates the difference. Suppose we have a box of *N* balls. Among them pN are red and (1 - p)N are blue. We draw a random ball from this box, record its color and put it back. The problem is in how many rounds we are sure about the value \hat{p} (which is the percentage of red balls we record) we guess is within the range $(1 \pm 0.01)p$. The rounds required is $\Omega(1/p)$ if we apply Chernoff bound, and $\Omega(1/p^2)$ if we apply Hoeffding's inequality.

References