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Starting from this lecture, we shall introduce the Chernoff-typed inequalities and their applications.
Today we will talk about the vanilla Chernoff bound and the Hoeffding’s inequality.

1 Chernoff-typed Bounds

1.1 Concentration inequalities

A concentration inequality is an upper bound on
Pr[|X —E[X]| > t].

On way to obtain a sharper bound is to choose certain non-decreasing function f and apply it on both
sides of the inequality:

Pr|X —E[X]| = t] = Pr{f(IX - E[X]]) 2 f(1)].

Then by Markov’s inequality,

E[f(X - EXID]

Pr|X —E[X]| = t] = Pr[f(IX -E[X]]) 2 f(1)] < 10

For example, if we choose f(x) = x?, the inequality becomes to

E[(X-E[X])?] Var[X]
t2 - tZ

Pr[|X -E[X]| > t] <

’

which is exactly the Chebyshev’s inequality. It is natural to apply f(x) = e** for @ > 0 so that we can
relate the upper bound to the moment generating function E [e“X ] of X. In cases that E [e“X ] is easy to
estimate, we obtain sharper concentration.

1.2 Vanilla Chernoff Bound

When the random variable X can be written as the sum of independent Bernoulli variables, its moment
generating function is easy to estimate.



Theorem 1. Let X, ..., X, be independent random variables such that X; ~ Ber(p;) foreachi =1,2,...,n.
Let X = )1, X; and denote p = E[X] = .7, pi, we have

ed a
PriX > (1+8)y] < (m) (1)
If0 < 6 < 1, then we have
e ? g
Pr(X < (1-6)u] < ((1 OIE 5) (2)

Proof. We only prove (1) and the proof of (2) is similar. For every a > 0, we have

aX a(1+d)u E [eaX]
Pr(X > (1+6)u] =Pr [e ze ] < e (140"

(3)

Therefore, we need to estimate the moment generating function E [e“X ] Since X = },7_; X; is the sum of
independent Bernoulli variables, we have

E[e"X] = [eaZL Xi] -

[T et

i=1

Since X; ~ Ber(p;), we can compute E [e“X"] directly:

E[eX] = pie® +(1—p;) =1+ (" — 1)p; < exp((e” — 1)p;).

Therefore,

n

E[e”] < | [exp (e~ 1p0) = exp (<e —1>Zpl)-exp<<e - )p). (4)

i=1 i=1

Plugging into (3), we obtain

E [e*¥] exp (e —1) \"
Pr(X < (1+4)u] < ea(1+8) < (exp (a(1+ 5))) ¥

Note that (5) holds for any @ > 0. Therefore, we would like to choose @ so as to minimize %. To
this end, we let

( exp (e — 1)

m) =exp(e“—1_a_a5),(ea_1_5):0‘

This gives a = log(1 + §). Therefore

exp (e* —1) \/ 3 e’ !

The following form of Chernoff bound is more convenient to use (but weaker):



Corollary 2. Forany0 < 4§ < 1,
52
Pr[X > (1+9)u] <exp (—?,u) (6)

Pr(X < (1-90)u] <exp (—%Z,u) (7)

Proof. We only prove (6). It suffices to verify that for 0 < § < 1, we have

e® < 52
1+ o) = P73
Taking logarithm of both sides, this is equivalent to

2

5
-(1+6)In(1+6) < ey

Let f(8) = 6 — (1+ 8)In(1 + 6) + & and note that

o,
1+6
Then for 0 < § < 1/2, f”(6) < 0, and for 1/2 < § < 1, f”/(§) > 0. Therefore, f’(5) first decrease and

then increase in [0, 1]. Also note that f’(0) = 0, f’(1) < 0 and f’(§) < 0 when 0 < § < 1. Therefore
f(8) < f(0) = 0 and (6) holds. m|

f'(6)=-In(1 +96) + 25, 7 (6) =-
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1.3 Application: Tossing Fair Coins

If we toss a fair coin n times, the average number of heads is n/2. We want to determine the value § such
that with high probability (say 99%), the total number of heads is in the interval of [(1-6)7, (1 +6)5]. We
use Chernoff bound to determine 4.

Let X denote the total number of heads, and X; ~ Ber (%) be the indicator of whether the i-th toss
gives a head. Then by Chernoff bound, we have

2

Pr[|X—g|25-g] SZexp(5

n
—- | <0.01
3 2)

So it suffices to choose
1
0=Q|—
)
1.4 Hoeffding’s Inequality

One of annoying restrictions of Chernoff bound is that each X; needs to be a Bernoulli random variable.
Hoeffding’s inequality generalizes Chernoff bound by allowing X; to follow any distribution, provided its
value is almost surely bounded.



Theorem 3 (Hoeffding’s inequality). Let X;,...,X, be independent random variables where each X; €
[ai, b;]" for certaina; < b;. AssumeE[X;] = p; foreveryl <i<n.LetX =Y  X;andp 2 E[X] =Y, p;,
then

Pr|X —pl > 1] < 2 ( 2 )
T — P < ex e
a P ?:1(bi - ai)z

forallt > 0.

We learnt from the proof of the Chernoff bound that the key to establish concentration inequalities of
this form is to obtain a nice upper bound on the moment generating function. Therefore, the following
Hoeffding’s lemma will be the main technical ingredient to prove Theorem 3.

Lemma 4 (Hoeffding’s lemma). Let X be a random variable withE[X] = 0 and X € [a, b]. Then it holds that

20h _ )2
E[e*¥] < exp(@) foralla € R

Proof. We first find a linear function to upper bound e** so that we could apply the linearity of expectation
to bound E [e“X ] By the convexity of the exponential function (Figure 1), we have

eab_eaa
e < b—(x—a)+e““, foralla<x<b
-a

Thus,
ab _ ,aa b
E[e"] < ‘ 5 Z (—a) +e% = b_aae“b+b_ae““
b a
— paa _ a(b-a)
b-a b- ae
= 11— 0 + 6e") 6 = —bi, t = a(b - a))
-a

2 90,

n fact, Pr[X; € [ai, bi]] = 1 suffices.



where

g(t) = —0t + log(1 — 0 + Oe*)

By Taylor’s theorem, for every real ¢ there exists a § between 0 and ¢ such that,

’ 1 144
9(t) = (0) +19'(0) + =g (&)t
Note that,

g(0) = 0;
t
= 0;
Oe'(1— 0 + Oe’) — Oe’
T (1-0+0et)
(1 - 6)et
T (1- 0+ 0el)?
~ (1-6)0
62z + 2(1 - 0)0 + =2
(1-6)0
= 20(1-0)+2(1-0)0
1

k

q"(3)

(z=¢')

(z>0)

Thus . o )
H<0+t-04—t2-—=—t>= =% - a)?
q(t) ST 3 s ( )

Therefore, E [e**] < exp (M) holds. o
Armed with Hoeffding’s lemma, it is routine to prove Hoeffding’s inequality.
Proof of Theorem 3. First note that we can assume E [X;] = 0 and therefore ;1 = 0 (if not so, replace X; by

X; — E[X;]). By symmetry, we only need to prove that Pr[X > t] < exp (—Wz_a)z) Since
i=1bi—ai

E [eaX]
eat

a>0

Pr[X >t] = Pr [eax > e‘”] <

and .
E [e“X] =E [ea Z?ZIXi] = 1_[ E [eaxi] )
i=1

Applying Hoeffding’s lemma for each E [e*X7] yields

E [eaXi] < exp (_M) .

8



Let a = we have,

4t
imi(bi—ai)?’

P E [eaXi] a® & 2t?
PriX>t]< —=1 < —at + — bi—a;)’| = T
r[X >t] < ot <exp|—-a s ;( i—a;) exp( ST (b —ai)z)

1.5 Comparing Chernoff Bound and Hoeffding’s Inequality

It is instructive to compare Hoeffding and Chernoff when X;’s are independent Bernoulli variables. For-
mally, let X, ..., X, be iid. random variables where X; ~ Ber(p) foralli =1,...,n. Set X = },_; X; and
denote E [X] = np by u. For t = §p, by Hoeftding’s Inequality, we have

Pr(|X — p| > t] < 2exp (-28°p*n).

By Chernoff Bound, we have
1
Pr|X —p| >t] <2exp (—552pn) .

Comparing the exponent, it is easy to see that for some constant p like p = 1/2, Hoeftding’s inequality is
tighter up to certain constant factor. However, when p is close to 0, Chernoff bound is significantly better
than Hoeffding’s inequality, as its dependency to p is linear.

The following simple example demonstrates the difference. Suppose we have a box of N balls. Among
them pN are red and (1 — p)N are blue. We draw a random ball from this box, record its color and put
it back. The problem is in how many rounds we are sure about the value p (which is the percentage of
red balls we record) we guess is within the range (1 + 0.01)p. The rounds required is Q(1/p) if we apply
Chernoff bound, and Q(1/p?) if we apply Hoeffding’s inequality.
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