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In this lecture, we first introduce the discrete Poisson distribution and examine some of its properties.
We then focus on its approximation of the binmoial distribution. We will show the approximation is
accurate, with only linear loss. At last we show the utility of the approximation via the max load problem
and coupon collector’s problem.

1 Them-balls-into-n-bins model

Them-balls-into-n-bins model is the following simple random process: throwingm balls into n bins uni-
formly at random. We already met the model in previous lectures. Today we continue to discuss the model
with some new tools.

Let Xi be the indicator of the event that the i-th bin is empty. Let us compute the probability that
Xi = 0. In this case, each throw should miss the i-th bin. Since the probability that one throw hits the i-th
bin is 1

n , the probability of Xi = 0 can be calculated as:

Pr [Xi = 0] =
!
1 − 1

n

"m
≈ e−

m
n

DefineX as the number of empty bins among n bins, thenX =
#n

i=1Xi . By the linearity of expectation,
E [X ] = #n

i=1 E [Xi ] = ne−
m
n . It means that about e−

m
n fraction of bins are empty, and this fraction decreases

exponentially withm.
We can then generalize the argument to find out the probability that one bin has r balls for any constant

r . It can be calculated as follows:

Pr [the i-th bin has r balls] =
!
m

r

" !
1
n

"r !
1 − 1

n

"m−r

≈ m!
(m − r )!r !n

−re−
m
n

Sincem and n are much larger compared to r , we can approximate m!
(m−r )! tom

r and get

Pr [the i-th bin has r balls] ≈ 1
r !

$m
n

%r
e−

m
n

The conditions for this approximation are r = o(n) and r = o(m).
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If we define λ = m
n , then the result can also be written as:

Pr [the i-th bin has r balls] ≈ e−λ
λr

r !
The result is exactly the p.d.f of Poisson distribution with mean λ = m

n .

2 Poisson Distribution

Definition 1. A discrete random variable Y satisfies Poisson distribution with mean λ > 0ïĳŇwritten as
Y ∼ Pois(λ), if for r = 0, 1, · · · , Pr [Y = r ] = e−λ λ

r

r !

We first verify that the definition is indeed a distribution.

Theorem 2. Pois(λ) is a probability distribution.

Proof.
∞&
r=0

Pr [Y = r ] =
∞&
r=0

e−λ
λr

r !
= e−λ

∞&
r=0

λr

r !
= e−λ · eλ = 1,

where we used the Taylor expansion of ex =
#∞

i=0
x i
i ! . □

Secondly, we verify that the expectation of a r.v. with distribution Pois(λ) is exactly its mean λ.

Theorem 3. Suppose Y ∼ Pois(λ), then E [Y ] = λ.

Proof.

E [Y ] =
∞&
r=0

r · Pr [Y = r ] =
∞&
r=0

r · e−λ λ
r

r !
= λ ·

∞&
r=1

e−λ
λ(r−1)

(r − 1)! = λ.

□

Poisson distribution has an important property:

Lemma 4. Assuming for every 1 ≤ i ≤ n, Xi ∼ Pois(λi ), then
#n

i=1Xi ∼ Pois
'#n

i=1 λi
(
.

Proof. We only need to prove the lemma for n = 2. The larger n case follows from an induction argument.
Assuming X ∼ Pois(λ1) and Y ∼ Pois(λ2). Then for every r ≥ 0,

Pr [X + Y = r ] =
r&

k=0

Pr [(X = k) ∩ (Y = r − k)]

=

r&
k=0

e−λ1
λk1
k!

· e−λ2
λr−k2

(r − k)!

= e−λ1−λ2
r&

k=0

λk1λ
r−k
2

k!(r − k)!

= e−λ1−λ2
1
r !

r&
k=0

!
r

k

"
λk1λ

r−k
2

= e−(λ1+λ2)
1
r !
(λ1 + λ2)r

□
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As hinted in them-balls-into-n-bins model, Poisson distribution can be used to approximate binomial
distribution when the mean λ is small. Now we prove this rigorously.

Theorem 5. Bin(n,p) ≈ Pois(np) when np = O(1) for sufficiently large n.

Proof. Let X ∼ Bin(n,p) and λ = np. We first give an upper bound of Pr [X = r ] for any r ≥ 0.

Pr [X = r ] =
!
n

r

"
pr (1 − p)n−r

=
n!

(n − r )!r !p
r (1 − p)n−r

≤ nr

r !
pr

(1 − p)n
(1 − p)r

≤ (np)r
r !

· e−pn

1 − pr
(because (1 − p)r > 1 − pr )

When n → ∞,p → 0, (np)r
r ! · e−pn

1−pr =
(np)r
r ! · e−pn = λr

r ! e
−λ . Hence the upper bound is λr

r ! e
−λ . We then

lower bound Pr [X = r ].

Pr [X = r ] =
!
n

r

"
pr (1 − p)n−r

=
n!

(n − r )!r !p
r (1 − p)n−r

≥ (n − r + 1)r
r !

pr (1 − p)n

From 1 + p ≤ ep , we can derive that 1 − p ≥ e−p (1 − p2). Using this inequality,

Pr [X = r ] ≥ ((n − r + 1)p)r
r !

e−pn(1 − p2)n

≥ ((n − r + 1)p)r
r !

e−pn(1 − np2)

When n → ∞,((n − r + 1)p)r → (np)r and 1 − np2 → 1. Hence ((n−r+1)p)r
r ! e−pn(1 − np2) → λr

r ! e
−λ . The

lower bound is also λr
r ! e

−λ . □

3 Poisson Approximation

For every i ∈ [n], let X (m)
i be the number of balls in the i-th bin in the m-balls-into-n-bins model. It

is clear that X (m)
i and X (m)

j are correlated, although every Xi has identical distribution Bin(m, 1n ). This
is the main difficulty to analyze the model in many situation. Surprisingly, if we replace these binomial
random variables with independent Poisson variables, the distributions turn out to be the same under some
condition.

Let Y (m)
i ∼ Pois(mn ).
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Theorem 6. The distribution of
$
X (k )
1 , ...,X

(k )
n

%
is the same as the distribution of

$
Y (m)
1 , ...,Y

(m)
n

%
conditional

on that
#n

i=1 Y
(m)
i = k .

Proof. Fix a nonnegative number k ≥ 0. Let X (k ) = (X (k )
1 , ...,X

(k )
n ) and Y (m) = (Y (m)

1 , ...,Y
(m)
n ). Then for all

k = (k1, ...,kn) with
#n

i=1 ki = k :

Pr

)
Y (m) = k

*****
n&
i=1

Y (m)
i = k

+
=

,n
i=1 Pr

-
Y (m)
1 = ki

.

Pr
-#n

i=1 Y
(m)
i = k

. (independence of Y (m)
i )

=

,n
i=1 e

−m
n (mn )ki

1
ki !

e−mmk 1
k !

(sum of Poisson r.v. is a Poisson r.v.)

= n−k
k!

k1!...kn!

= Pr
-
X (k ) = k

.

□

The theorem tells us that one might try to use independent Poisson variables to replace correlated
binomial variables when studying the balls-into-bins model. In this case, we have k = m. However, in
order to apply the theorem, we need to handle the condition

#n
i=1 Y

(m)
i = k . Sometimes we can simply

drop the condition since the condition
#n

i=1 Y
(m)
i =m happens with reasonable probability.

Suppose we have a non-negative function f : Nn → N , and we want to compute its expectation
E
-
f (X (m)

1 , · · · ,X
(m)
n )

.
. This is challenging in general since X (m)

1 , · · · ,X
(m)
n have a complex joint distribu-

tion. However, using the approximation E
-
f (Y (m)

1 , · · · ,Y
(m)
n )

.
, it becomes easier due to the independence

of Y (m)
1 , · · · ,Y

(m)
n . The following theorem indicates that the approximation is good.

Theorem 7. E
-
f (X (m)

1 , · · · ,X
(m)
n )

.
≤ e

√
m · E

-
f (Y (m)

1 , · · · ,Y
(m)
n )

.

Proof.

E
-
f (Y (m)

1 , · · · ,Y
(m)
n )

.
=

m&
k=0

E

)
f (Y (m)

1 , · · · ,Y
(m)
n )

*****
n&
i=1

Y (m)
i = k

+
Pr

)
n&
i=1

Y (m)
i = k

+

≥ E

)
f (Y (m)

1 , · · · ,Y
(m)
n )

*****
n&
i=1

Y (m)
i =m

+
Pr

)
n&
i=1

Y (m)
i =m

+

= E
-
f (X (m)

1 , · · · ,X
(m)
n )

.
Pr

)
n&
i=1

Y (m)
i =m

+

The last equality comes from the fact that the joint distribution ofY (m)
1 , · · · ,Y

(m)
n given

#n
i=1 Y

(m)
i =m is the

same as that of X (m)
1 , · · · ,X

(m)
n , according to Theorem 6. Since

#n
i=1 Y

(m)
i follows the Poisson distribution

with meanm,

E
-
f (Y (m)

1 , · · · ,Y
(m)
n )

.
≥ E

-
f (X (m)

1 , · · · ,X
(m)
n )

.
e−m

1
m!

mm

4



By Stirling’s formula, we knowm! =
√
2πm(me )m(1 + o(1)). Here we use a looser bound: m! ≤ e

√
m(me )m ,

which can be verified by integration.
We can now derive

E
-
f (Y (m)

1 , · · · ,Y
(m)
n )

.
≥ 1

e
√
m
E
-
f (X (m)

1 , · · · ,X
(m)
n )

.
,

which finishes the proof. □

Remark. If f is monotone, the coefficient e
√
m can be improved to 2.

Usually we let f be the indicator of certain "bad event" B, which is 1 if the event B happens and 0
otherwise. Therefore E [f ] is the probability that the bad event happens and we often want to argue that
this probability is not too large. We can upper bound it in the independent Poisson world and the theorem
implies an upper bound in the real world.

Corollary 8. If B happens w.p. p in the Poisson case, then B happens w.p. at most e
√
mp in the real model.

We will show you two applications of Corollary 8 in the next section.

4 Applications of Poisson Approximation

4.1 Max Load

In previous classes, we have seen the max load problem: In the "m balls into n bins" model, let Xi be
the number of balls in the i-th bin. We want to compute the number of balls in the fullest bin, that is
X = max

i ∈[n]
Xi .

Assumem = n as we did in the last class. We already showed via the union bound argument that for
some constant c ,

Pr
/
X ≥ c logn

log logn

0
= O

!
1
n

"

.
Now, using the Poisson approximation, we can show that for some other constant c ′,

Pr
/
X <

c ′ logn
log logn

0
= O

!
1
n

"

Denote k = c ′ logn
log logn . Let Y1, · · · ,Yn be the Poisson approximation of X1, · · · ,Xn . It is clear that Yi ∼

Pois(1). Denote Y = max
i ∈[n]

Yi . If we can bound the probability of the event Y < k , then we can obtain a

bound for Pr [X < k] according to Corollary 8. We have

Pr [Y < k] = Pr [Y1 < k ∧ · · · ∧ Yn < k] = (Pr [Y1 < k])n

The second equality follows from the fact that Yis are independent. Then we focus on Pr [Y1 < k].

Pr [Y1 < k] = 1 − Pr [Y1 ≥ k]
≤ 1 − Pr [Y1 = k]

= 1 − 1
ek!
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So Pr [Y < k] ≤ (1− 1
ek ! )n ≤ e−

n
k ! . We now need to prove that there exists a constant c ′ such that e−

n
k ! < n−2.

Then we can obtain Pr [X < k] < e
√
n

n2 <
1
n by Corollary 8. Note that

e−
n
k ! < n−2 ⇐⇒ n

k!
> 2 logn ⇐⇒ (2 logn)

√
2πk(k

e
)k < n

⇐⇒ log 2 + log logn +
1
2
log 2πk + k(logk − 1) < logn

Since k logk = c ′ logn
log logn (log c ′ + log logn − log log logn), we just need to let c ′ be a constant less than 1, and

then e−
n
k ! < n−2 holds when n is sufficiently large.

4.2 Coupon Collector’s Problem, Re-revisited

Recall the coupon collector’s problem: given n coupons, what’s the expected number of coupons to draw
with replacement before having drawn each coupon at least once? Let Xi be the number of draws to get
the i-th distinct coupon while exactly i − 1 distinct coupons are already in hand, and X =

#n−1
i=0 Xi .

In lecture 2, we have shown that the expectation of X is nHn ≈ n lnn. In lecture 3, we yield concen-
tration results. By applying Markov Inequality, we get

Pr [X > cnHn] ≤
1
n

Furthermore, we tighten the concentration with Chebyshev’s inequality:

Pr [X > nHn + cn] ≤
π 2

6c
Here, since coupon collector’s problem can be thought of as balls-and-bins problem, we can use Poisson
approximation to obtain much stronger results:

Theorem 9. Pr [X > n logn + cn] = 1 − e−e
−c

when n is sufficiently large.

Proof. Suppose we throwm = n logn+cn balls. LetYi be the Poisson approximation ofXi , andY =
#n

i=1 Yi .
It’s clear that Yi ∼ Pois(logn + c). So we can get Pr [Y1 = 0] = e−c

n . Since Yis are independent and have
identical distribution,

Pr

)
n1
i=1

Yi ! 0

+
= (1 − Pr [Y1 = 0])n

= (1 − e−c

n
)n

≈ e−e
−c

Our next step is to show the Poisson approximation is accurate, which means the difference between
the probability calculated in the Poisson case and in the real-world case is o(1). Note that we can not
directly apply Corollary 8 here, because it will multiply e

√
m to e−e−c , making the bound too loose. Instead,

we can define a bad event B: |Y −m | is larger than a threshold. By the Chernoff bound for the Poisson
distribution[1], we can show that the probability of B is o(1). Now we can assume Y is almostm. Then, we
show that the difference between "Y is exactlym" and "Y is almostm" makes an asymptotically negligible
difference in the probability that all the coupons are collected in real-world case. Finally, by Theorem 6, on
condition thatY =m, Yi andXi have the same joint distribution. So the Poisson approximation is accurate.

A rigorous proof can be found in Theorem 5.13 of the textbook [2]. □
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