
Advanced Algorithms III (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Yujie Lu & Yangtian Zhang

Last modified on Sept 27, 2020

In this lecture, we first introduce the balls-into-bins model, a simple probabilistic model that we will
meet many times in this course. We will see that the analysis of many randomized algorithms will even-
tually reduce to some basic questions about balls and bins. So we will develop tools to study on the model.

We will then introduce “concentration inequalities”, namely a set of inequalities that provide bounds
on how a random variable deviates from its expectation. We will develop the “second-order method” and
see how it applies to analyze random graphs.

1 Balls into bins

Ball-into-bins is the following random process:

Throwm balls into n bins uniformly at random.

Many interesting questions can be asked about the process and today we mainly investigate two of them.

1.1 Birthday paradox

Consider the probability that some bin has more than one ball. The problem can also be described as the
probability that two persons in the class have the same birthday, hence is called birthday paradox . Since
each ball is thrown independently, the probability that no collision occurs after k-th ball is thrown is n−k+1

n .
Hence

Pr [no same birthday] =
m!
k=1

n − k + 1
n

=

m−1!
k=1

"
1 − k

n

#

≤ exp

$
−
%m−1

k=1 k

n

&
(by 1 + x ≤ ex)

= exp
"
−m (m − 1)

2n

#
.

Form = O
'√
n
(
, the probability can be arbitrarily close to 0.

Remark. This inequality is quite tight, since when n is sufficiently large, we have k < m which implies that
k
n <

√
n
n → 0.

1

1.2 Max Load

Max load is the number of balls in the fullest bin. Xi be the number of balls in the i-th bin. We need to
compute X = maxi ∈[n]Xi . Today we assume thatm = n. We try to find a number k such that Pr [X > k] =
O (1). By the union bound, we have

Pr
)
max
i

Xi > k
*
= Pr [∃i : Xi > k] ≤ n · Pr [X1 > k] .

So it suffices to determine the k such that Pr [X1 > k] = O
' 1
n

(
.

Again by the union bound we have

Pr [X1 > k] ≤
"
n

k

#
· n−k ≤ 1

k!
≤

"
k

e

#k
,

where the last inequality is due to the Stirling’s formula [3] k! ≈
√
2πk

+
k
e

,k
. So we need to choose k such

that
+
k
e

,k
= O

' 1
n

(
. Indeed, it is easy to verify that k = O

+
logn

log logn

,
is enough.

By the analysis above, we know the maximum load isO
+

logn
log logn

,
w.h.p. (with high probability). I will

leave as an exercise to show that E [X] = Θ
+

logn
log logn

,
.

Remark: Analysis for the case that m ! n is given in [5]. And a tight bound is given in [4], which is
Γ−1(n) − 3

2 + o(1).

2 Concentration Inequality

We are often interested in how a random variable deviates from certain fixed value (typically 0 or its
expected value). Concentration inequalities are inequalities of this form.

2.1 Markov’s Inequality

Theorem 1 (Markov’s Inequality). For any non-negative random variable X and a > 0,

Pr [X ≥ a] ≤ E [X]
a
.

Proof. Just notice that
E [X] ≥ a · Pr [X ≥ a] + 0 · Pr [X < a] .

It follows that
Pr [X ≥ a] ≤ E [X]

a
.

□

2.2 Applications of Markov’s Inequality

There are lots of applications of Markov’s inequality. For example, we can apply Markov’s inequality
directly to the Max Load problem mentioned above. Since E [X1] = 1, we derive that

Pr
-
X1 >

logn
log logn

.
≤ log logn

logn

2

The upper bound is weaker than the previous result 1
n , mainly due to the fact that we only utilize E [X1]

to estimate the upper bound while lacking a lot of other information.
Here we give another simple application of theMarkov’s inequality. There are two types of randomized

algorithms, Las Vegas and Monte Carlo. Assume the task is to find some correct answer k .

• Las Vegas Algorithm[2]: a random variable k is generated and checked, repeat this process until the
right k is found.

• Monte Carlo Algorithm: the process is repeated for only N times and output certain k . The output
might not be correct.

In other words, a Las Vegas randomized algorithm always outputs a correct answer when it terminates.
However, the running time of the algorithm is random. In complexity theory, the family of problems
solvable by a Las Vegas algorithm terminating in polynomial-time in expectation are called ZPP (zero-
error probabilistic polynomial time).

On the other hand, the running time of a Monte Carlo algorithm is bounded by some fixed value, but
the output might be wrong. In case a problem admits a Monte Carlo algorithm whose running time is a
polynomial in the size of the input and the probability of correctness is at least 2/3, we say the problem
belongs to BPP (bounded-error probabilistic polynomial time).

We can use Markov inequality to show that ZPP ⊆ BPP. Suppose we have a Las Vegas algorithm A
who terminates in X steps on some input with E [X] = T . We can turn it into a Monte Carlo algorithm by
running A for 3T steps. If the A terminates before 3T , we just output. Otherwise, we output an arbitrary
answer. Then the probability that A makes a mistake is bounded by

Pr [X > 3T] ≤ 1
3
.

2.3 Chebyshev’s Inequality

A common trick to improve concentration is to consider E [f (X)] instead E [X] for some nondecreasing
f : R → R, since

Pr [X ≥ a] = Pr [f (X) ≥ f (a)] .

Take f (x) = x2 we obtain another concentration inequality: Chebyshev’s Inequality

Theorem 2 (Chebyshev’s Inequality). For any non-negative random variable X and a > 0 ,

Pr [X ≥ a] ≤
E
/
X 20
a2
.

Replace X with X − E [X], we get another form of this inequality

Pr [|X − E [X]| ≥ a] ≤ Var [X]
a2

.

2.4 Applications of Chebyshev’s Inequality: Coupon-Collector’s Problem, Revisited

Recall the coupon collector’s problem: given n coupons, what’s the expected number of coupons to draw
with replacement before having drawn each coupon at least once?

3

Let Xi be the number of draws to get the i-th distinct coupon while exactly i − 1 distinct coupons are
already in hand. In the previous class we have computed the expectation using the linearity property of
expectations:

E [X] = E

1
n−12
i=0

Xi

3
=

n−12
i=0

E [Xi] =
n−12
i=0

n

n − i
= n · H (n) n→∞−→ n(lnn + γ).

For the above coupon collector problem, the Markov inequality only provides a very weak concentration.
But we can yield a more tight concentration results by applying Chebyshev’s Inequality:

Pr [X ≥ nHn + cn] ≤
π 2

6c2
.

In order to apply Chebyshev’s inequality, we should first compute the variance of X . Since X =
%n−1

i=0 Xi
and X0, ...,Xn−1 are independent, we have

Var [X] = Var

1
n−12
i=0

Xi

3
=

n−12
i=0

Var [Xi] .

Recall that Xi follows geometric distribution Xi ∼ Geom(n−in). We have the following lemma for the
geometric distribution.

Lemma 3. Assuming Y follows geometric distribution with parameter p, then Var [Y] = 1−p
p2

Proof. We first show that E
/
Y 20 = 2−p

p2 .
Since Pr [Y = i] = (1 − p)i−1p, let

S ≜ E
/
Y 20 = ∞2

i=0
i2(1 − p)i−1p. (1)

Then we have

(1 − p) · S =
∞2
i=1

i2 · (1 − p)i · p (2)

Equation (1) - Equation (2) yields

S = 1 +
∞2
i=2

(1 − p)i−1 · (2i − 1) = 1 + 2 ·
"
1
p2

− 1
#
− 1 − p

p
=

2 − p

p2

Since Var [Y] = E
/
Y 20 − (E [Y])2 and E [Y] = 1

p , we finally get

Var [Y] = E
/
Y 20 − (E [Y])2 = 1 − p

p2
.

□

4

Applying the lemma, we obtain Var [Xi] = i
(n−i)2 . Recall that Var [X] = %n−1

i=0 Var [Xi], then

Var [X] =
n−12
i=0

Var [Xi] =
n−12
i=0

n · i
(n − i)2

≤ n2
n−12
i=0

1
(n − i)2 = n

2
"
1
12
+

1
22
+

1
32
+ . . . +

1
n2

#

≤ π 2n2

6
.

Then by Chebyshev’s inequality, we have

Pr [|X − nHn | ≥ cn] ≤ Var [X]
a2

≤ π 2

6c2
.

Then
Pr [X − nHn ≥ cn] ≤ Pr [|X − nHn | ≥ cn] ≤ π 2

6c2
.

The use of Chebyshev’s inequality is often referred as the “second-moment method” as it uses the variance
of the random variable.

3 Threshold Behavior of Random Graph

Another application of Chebyshev’s inequality is to establish the threshold behavior of Erdős-Rényi ran-
dom graphs Gn,p .

The notationGn,p specify a distribution over all simple undirected graphs withn vertices. In the model,
each of the

'n
2
(
possible edges exists with probability p independently. Therefore, the expected number of

edges in the graph is
'n
2
(
p and each vertex has expected degree (n − 1)p

Figure 1: A graph generated with p = 0.01 [1]

5

Among many other interesting properties, random graphs establish the so-called “threshold behavior”
for certain graph properties. That is, in the modelGn,p it is often the case that there is a threshold function
r such that: (a) when p is just less than the r (n), almost no graph satisfies the desired property; (b) when p
is just larger than r (n), almost every graph has the desired property. Formally, we have

Definition 4 (Threshold function). Given a graph property P , define its threshold function r (n) as:

• if p ≪ r (n),G ∼ Gn,p does not satisfy P w.h.p.;

• if p ≫ r (n),G ∼ Gn,p satisfies P w.h.p.

Now we will show the property P = "G contains a 4-clique" has the threshold function n−
2
3 . Our proof

will apply the Markov’s inequality and Chebyshev’s inequality we have just learned.

Theorem 5. The property "G contains a 4-clique" has the threshold function n−
2
3 .

Proof. We need to verify the desired property for p ≪ n−
2
3 and p ≫ n−

2
3 . The former case is easier.

For every S ∈
'[n]
4
(
, let XS be the corresponding indicator variable, i.e.

Xs =

4
1, if G[S] is a clique.
0, otherwise.

Let X =
%

S ∈([n]4)XS , then X is the total number of cliques in G. So G satisfies P iff X > 0. By the
linearty of expectation, we have

E [X] =
2

S ∈([n]4)
E [XS] =

"
n

4

#
p6 ≈ n4p6

24
.

If we consider the case p ≪ n
−2
3 , then E [X] = o(1). SinceX is a nonnegative random variable, it follows

by Markov inequality

Pr [X ≥ 1] ≤ E [X]
1
= o(1).

Hence given any ε > 0, the probability that G has a clique 4 is less than ε for sufficiently large n.
However, we could not use the same argument to prove the p ≫ n−

2
3 case. This is because the informa-

tion of expectation does not imply w.h.p. results in general. It is possible that almost all graphs contains
no 4-clique but a small fraction of graphs contain a large number of 4-cliques, so that the expectation in
all is large. Therefore, we have to look at the variance. First notice that

Pr [X = 0] ≤ Pr [|X − E [X] | ≥ E [X]]

By Chebyshev’s Inequality we have

Pr [|X − E [X] | ≥ E [X]] ≤ Var [X]
(E [X])2

6

We only need to give bound on Var [X],

Var [X] = E
566667

$2
S

XS

&289999:
−
$
E

12
S

XS

3&2

=
2
S!T

E [XSXT] +
2
S

E
/
X 2
S
0
−
2
S!T

E [XS]E [XT] −
2
S

E [XS]2

=
2

|S∩T |=2
(E [XSXT] − E [XS]E [XT]) +

2
|S∩T |=3

(E [XSXT] − E [XS]E [XT])

+
2
S

'
E
/
X 2
S
0
− E [XS]2

(

When |S ∩T | = 2 (the corresponding cliques share one edge), the probability that S,T are both 4-cique is
p11 (since there are only 11 edges), hence we have

2
|S∩T |=2

(E [XSXT] − E [XS]E [XT]) ≤
2

|S∩T |=2
(E [XSXT]) =

"
n

2

"
n − 2
2

"
n − 4
2

#
p11 ≈ n6p11.

For |S ∩ T | = 3 (the corresponding cliques share two edges), similarly the probability that S,T are both
4-clique is p9, and it holds that

2
|S∩T |=3

(E [XSXT] − E [XS]E [XT]) ≤
2

|S∩T |=3
(E [XSXT]) =

"
n

3

"
n − 3
1

"
n − 4
1

#
p9 ≈ n5p9.

Now consider the last summation, just use the result above, we have2
S

'
E
/
X 2
S
0
− E [XS]2

(
≤
2
S

'
E
/
X 2
S
0 (

≤ n4p6.

To sum up, since p ≪ n−
2
3 , we have

Var [X] ≤ n6p11 + n5p9 + n4p6 = o(E [X]2).

Finally, we get

Pr [X = 0] ≤ Var [X]
E [X]2

= o(1).

Thus P is not satisfied w.h.p. □

References

[1] Erdős-Rényi model. https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model.
Accessed Sep 25, 2020. 5

[2] Las Vegas algorithm. https://en.wikipedia.org/wiki/Las_Vegas_algorithm. Accessed Sep 25,
2020. 3

[3] Stirling’s approximation. https://en.wikipedia.org/wiki/Stirling%27s_approximation. Ac-
cessed Sep 25, 2020. 2

7

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Stirling%27s_approximation

[4] G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, Journal of the ACM
(JACM), 28 (1981), pp. 289–304. 2

[5] M. Raab and A. Steger, Balls into bins - A simple and tight analysis, in International Workshop on
Randomization and Approximation Techniques in Computer Science, Springer, 1998, pp. 159–170. 2

8

