
Advanced Algorithms II (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Erzhi Liu, Siyu Sun

Last modified on Sept 20, 2020

In this lecture we first review some basic properties of random variables. We then examine the lin-
earity of expectations and utilize the property to analyze a few examples of random processes. At last we
introduce a useful inequality due to Karp, Upfal and Widgerson for analyzing linear recurrence involving
random variables.

1 Random Variables

A probability space is a tuple (Ω,F, Pr) where Ω is the universe, F is the collection of events and Pr is a
probability measure. Today we will assume that Ω is countable, and F is simply 2Ω . A random variable X
is a function X : Ω → R. The expectation of X is defined as E [X] = ∑

a:Pr [X=a]>0 a · Pr [X = a].
For any n random variables X1,X2, ...,Xn , we have

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] .

This property is called the linearity of expectations and can be easily verified via the definition:

E [X1 + X2] =
∑
a,b

(a + b) · Pr [X1 = a,X2 = b]

=
∑
a,b

a · Pr [X1 = a,X2 = b] +
∑
a,b

b · Pr [X1 = a,X2 = b]

=
∑
a

a · Pr [X1 = a]] +
∑
b

b · Pr [X2 = b]

= E [X1] + E [X2]

Note that we do not need to assume any independence among {Xi }i=1, ...,n .

2 The Coupon Collector Problem

The coupon collector problem asks the following question: If each box of a brand of cereals contains a
coupon, randomly chosen from n different types of coupons, what is the expected number of boxes one
needs to buy to collect all n coupons? An alternative statement is: Given n coupons, how many coupons
one expects to draw with replacement before having drawn each coupon at least once?

The expectation can be simply calculated using the linearity property of the expectations.

1

Let Xi be the number of draws to get the i-th distinct coupon while exactly i − 1 distinct coupons are
already in hand. Then the number of draws X to collect all coupons satisfies

X =
n−1∑
i=0

Xi ,

so by the linearity of expectations:

E [X] = E

[
n−1∑
i=0

Xi

]
=

n−1∑
i=0

E [Xi] .

It is clear that Xi satisfies the geometric distribution with parameter pi = n−i
n , namely Xi is the number of

coins one needs to toss before seeing the first HEAD where each independent toss of a coin gives HEAD
with probability pi . We often write Xi ∼ Geom(pi).

Lemma 1. Let X ∼ Geom(p). Then E [X] = 1
p .

Proof. We give two proofs.

1. By the definition of the geometric distribution,

S ≜ E [X] =
∞∑
i=1

i · (1 − p)i−1 · p. (1)

Then

(1 − p) · S =
∞∑
i=1

i · (1 − p)i · p (2)

(1)-(2) yields

S =
∞∑
i=1

(1 − p)i−1 = 1
p

2. If the first toss is not HEAD, counting from the second toss, the expectation should be the same as
S . Therefore the expectation satisfies the following identity:

S = p · 1 + (1 − p) · (S + 1),

which immediately gives S = 1
p .

□

Now let’s come back to the coupon collector:

E [X] = E

[
n−1∑
i=0

Xi

]
=

n−1∑
i=0

E [Xi] =
n−1∑
i=0

n

n − i
= n · H (n) n→∞−→ n(lnn + γ),

where the constant γ = 0.577... is called the Euler constant.

2

3 Failure of Linearity

In this section, we consider two situations where the linearity of expectation might fail.

1. n = ∞. Consider the St. Petersburg paradox. In each stage of the game, a fair coin is tossed and a
gambler guesses the result. He wins the amount he bet if his guess is correct and loses the money if
he is wrong. He bets 1 dollar at the first stage. If he loses, he doubles the money and bets again. The
game ends when the gambler wins. In stage i , he wins Xi with E [Xi] = 0, so X =

∑∞
i=1 E[Xi] = 0.

On the other hand, he eventually wins 1 dollar.

E

[∞∑
i=1

Xi

]
= 1 !

∞∑
i=1

E [Xi]

2. n is random. Suppose X1 = X2 = ... = XN = N , N is random in {1, ..., 6}. Then

E [N] · E [X1] = 12.25;

E

[
N∑
i=1

Xi

]
= E [N · N] = 15.166...

We will say more about these two facts later in this course.

4 Quick Select

Now we apply the linearity of expectations to analyze a randomized algorithm. Given an unsorted arrayA
of n distinct numbers and an integer k ∈ {1, . . . ,n}, consider the problem to find the k-th largest number
in A. The following Quick Select algorithm solves the problem recursively.

Algorithm 1 The Quick Select algorithm to find the k-th largest element
Input: An unsorted array A and a number k .
Output: The k-th largest number of A.

1: function Find(A,k)
2: Pick x ∈ A uniformly at random.
3: Partition A − {x} into A1,A2 such that ∀y ∈ A1,y < x ,∀z ∈ A2, z > x
4: if |A1 | = k − 1 then
5: return x
6: end if
7: if |A1 | > k − 1 then
8: return Find(A1,k)
9: end if
10: return Find(A2,k − |A1 | − 1)
11: end function

We will analyze the expected running time of Find(A,k).

3

4.1 The running time of Quick Select

Define Xi as the size of the set A at the i-call to Find(A,k). Then X1 = n. It is clear that the partition step
in Line 3 can be implemented in O(|A|) time, so the total running time of the algorithm is proportional to∑∞

i=1Xi . The following lemma shows that on average Xi+1 cannot be too large comparing to Xi .

Lemma 2. For every i ≥ 1, E [Xi+1 | Xi] ≤ 3
4Xi .

Proof. We only prove the lemma for i = 1. The same argument applies for larger i . In the algorithm, we
use a random x to split the set A into two smaller sets A1 and A2. Assuming x is the ℓ-th largest number
in A, then |A1 | = ℓ − 1 and |A2 | = n − ℓ. In case ℓ ! k , the algorithm then recursively calls Find(A1,k) or
Find(A2,k − |A1 | − 1). So we have

E [X2 | X1] ≤ E [max {ℓ − 1,n − ℓ}] .

To compute the expectation of themaximumof two numbers, we distinguish betweenwhether ℓ−1 ≤ n−x :

E [max {ℓ − 1,n − ℓ}] = E [x − 1 | x − 1 > n − 1] Pr [x − 1 > n − 1]+E [n − x | x − 1 ≤ n − x] Pr [x − 1 ≤ n − x] .

Note that both E [x − 1 | x − 1 > n − 1] and E [n − x | x − 1 ≤ n − x] are atmost 3
4n, we obtain E [X2 | X1] ≤

3
4n.

□

It follows from the lemma that

E [Xi+1] = E [E [Xi+1 | Xi]] ≤
3
4
E [Xi] ≤

(
3
4

) i
n

Let T =
∑∞

i=1Xi be the total running time, then by the linearity of expectations,

E [T] = E

[∞∑
i=1

Xi

]
= E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] ≤
n∑
i=1

(
3
4

) i−1
n = 4n.

The second equality above is due to the fact that Xi+1 ≤ Xi − 1 for every i ≥ 1.

5 Karp-Upfal-Wigderson Inequality

While analyzing randomized algorithms involving recursive calls, if we useT (n) to denote (an upper bound
of) the running time on instances of size n, one often meets a recurrence like:

T (n) ≤ 1 +T (n − Xn)

where Xn is a random variable indicating the size reduced in the recursive call. The following useful
inequality due to Karp, Upfal and Wigderson [1] provides an upper bound on E [T (n)].

Theorem 3. Let T : N → N be a function. Assuming it satisfies T (n) ≤ 1 + T (n − Xn) for certain random
variables Xn and moreover

1. For some integer a, T (a) = 0;

4

2. For any n ∈ N, Xn ∈ {0, 1, . . . ,n};

3. There exists a positive and non-decreasing function µ : N → N such that E[Xn] ≥ µ(n) for all n > a.

Then we have
E [T (n)] ≤

∫ n

a

1
µ(t) dt

The condition T (a) = 0 means that when the input size is equal to or below a, our algorithm can
terminate without further recursive calls. So one can imagine that we initially stand at the point n > a on
the real line and walk towards the point a. The instantaneous velocity at the point t isXt , who has a lower
bound µ(t) in expectation. Therefore, if everything goes on as the expectation, the total time one costs to
arrive at the point a from the point n should be upper bounded by a term like

∫ n
a

1
µ(t) dt . However, µ(t) is

only a lower bound for the velocity Xt in expectation, and it is possible that E
[

1
Xt

]
is unbounded. So we

cannot obtain the upper bound on time in the most straightforward way. Nevertheless, KUW inequality
says that it does hold as we expect.

Proof of Theorem 3. We give a proof by induction on n. If n = a, then E [T (a)] = 0 and the theorem trivially
holds. So we let n > a and assume the theorem is true for smaller n. Now we bound

E [T (n)] = 1 + E [T (n − Xn)] .

The immediate idea is to apply the induction hypothesis to the term E [T (n − Xn)], but one needs to be
careful about the possibility that Xn = 0. Let q = Pr [Xn ! 0] and 1 − q = Pr [Xn = 0]. We distinguish
between whether Xn = 0:

E [T (n)] = 1 + E [T (n − Xn)] = 1 + E [T (n − Xn) · 1[Xn ! 0]] + E [T (n − Xn) · 1[Xn = 0]] . (3)

Note that

E [T (n − Xn) · 1[Xn = 0]] = E [T (n − Xn) | Xn = 0] Pr [Xn = 0] = E [T (n)] · (1 − q) (4)

Combining (3) and (4), we obtain

E [T (n)] = 1
q
+
1
q
· E [T (n − Xn) · 1[Xn ! 0]] (5)

By the tower rule of expectation, we have

E [T (n − Xn) · 1[Xn ! 0]] = E [E [T (n − Xn) · 1[Xn ! 0] | Xn]] .

We can apply the induction hypothesis to obtain

E [T (n − Xn) · 1[Xn ! 0] | Xn] ≤
∫ n−Xn

a

1[Xn ! 0]
µ(t) dt . (6)

5

Plugging (6) into (5), we obtain

E [T (n)] ≤ 1
q
+
1
q
· E

[∫ n−Xn

a

1[Xn ! 0]
µ(t) dt

]

=
1
q
+ E

[∫ n−Xn

a

1
µ(t) dt

---- Xn ! 0
]

=
1
q
+ E

[∫ n

a

1
µ(t) dt

---- Xn ! 0
]
− E

[∫ n

n−Xn

1
µ(t) dt

---- Xn ! 0
]

=
1
q
+

∫ n

a

1
µ(t) dt − E

[∫ n

n−Xn

1
µ(t) dt

---- Xn ! 0
]
. (7)

Note that µ(n) is positive and non-decreasing, we have

E
[∫ n

n−Xn

1
µ(t) dt

---- Xn ! 0
]
≥ E

[∫ n

n−Xn

1
µ(n) dt

---- Xn ! 0
]
= E [Xn | Xn ! 0] · 1

µ(n) . (8)

Since E [Xn] = E [Xn | Xn ! 0] · q + E [Xn | Xn = 0] · (1 − q), we have E [Xn | Xn ! 0] = E[Xn]
q . Combining

with (8), we obtain

E
[∫ n

n−Xn

1
µ(t) dt

---- Xn ! 0
]
≥ E [Xn]

q · µ(n) ≥ 1
q
.

Plugging this into (7) proves the theorem.
□

In the following we apply the KUW inequality for the examples met today.

5.1 Mean of Geometric Variables

Assuming X ∼ Geom(p), we use KUW to upper bound E [X]. We use T (1) to denote the number of tosses
before seeing the first HEAD. Then clearly

T (1) = 1 +T (1 − X1) for X1 ∼ Ber(p).

Since E [X1] = p, we can pick µ(t) = p. Then by KUW,

E [T (1)] ≤
∫ 1

0

1
p
dt =

1
p
.

5.2 Coupon Collector

We useT (m) to denote the number of draws when exactlym types of coupons are not collected yet. Then

T (m) = 1 +T (m − Xm) for Xm ∼ Ber(m/n)

Then for an integerm,

E [Xm] =
m

n
=

⌈m⌉
n
≜ µ(m).

Note that we use ⌈m ⌉
n instead of m

n here to avoid the divergence of the integral in KUW. It then follows
that

6

E [T (n)] ≤
∫ n

0+

n

⌈t⌉ dt = n ·
n∑
i=1

1
i
= nH (n).

We remark that we integrated from 0+ here to avoid unnecessary discussions. This is fine by slightly
tweaking the proof of KUW.

5.3 Quick Select

Let T (n) denote the upper bound on the number of rounds (or equivalently the depth of the recursion) of
ourQuick Select algorithm when |A| = n. Then

T (n) = 1 +max {T (n − Xn),T (Xn − 1)} where Xn ∈R {1, 2, ...,n} .

On the other hand, we already showed that

max {T (n − Xn),T (Xn − 1)} = T (n − Yn)

for certain Yn satisfying
E [Yn] ≥

n

4
≜ µ(n).

So by KUW,

E [T (n)] ≤
∫ n

0

4
t
dt = 4 logn.

References

[1] R. M. Karp, E. Upfal, and A. Wigderson, The complexity of parallel search, Journal of Computer and
System Sciences, 36 (1988), pp. 225–253. 4

7

