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In our previous study of discrete time Markov chains, we found that irreducible aperiodic Markov
chains converge to a stationary distribution. However, we did not determine how quickly they converge,
which is important in a number of algorithmic applications. In this lecture, we introduce the concept of
coupling, a powerful method for bounding the rate of convergence of Markov chains.

1 Coupling

1.1 Total variation distance

Definition 1. The total variation distance between two distributions 𝜇 and 𝜈 on a countable state space Ω is
given by

𝐷TV(𝜇, 𝜈) =
1
2

∑
𝑥 ∈Ω

|𝜇 (𝑥) − 𝜈 (𝑥) | .

We can look to the following figure of two distributions on the sample space. The variation distance
is half the area enclosed by the two curves.

Figure 1: Two distributions on sample space

The total variation distance can be equivalently viewed in the following way.

Lemma 2. We define 𝜇 (𝐴) = ∑
𝑥 ∈𝐴

𝜇 (𝑥), 𝜈 (𝐴) = ∑
𝑥 ∈𝐴 𝜈 (𝑥), then we have

𝐷TV(𝜇, 𝜈) = max
𝐴⊆Ω

|𝜇 (𝐴) − 𝜈 (𝐴) | .
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Proof. Let Ω+ ⊆ Ω be the set of states such that 𝜇 (𝑥) ≥ 𝜈 (𝑥), and let Ω− ⊆ Ω be the set of states such that
𝜈 (𝑥) > 𝜇 (𝑥). It can be easily verified that

max
𝐴⊆Ω

𝜇 (𝐴) − 𝜈 (𝐴) = 𝜇 (Ω+) − 𝜈 (Ω+),

max
𝐴⊆Ω

𝜈 (𝐴) − 𝜇 (𝐴) = 𝜈 (Ω−) − 𝜇 (Ω−) .

By 𝜇 (Ω) = 𝜈 (Ω) = 1,

𝜇 (Ω+) + 𝜇 (Ω−) = 𝜈 (Ω+) + 𝜈 (Ω−) = 1,

which implies that

𝜇 (Ω+) − 𝜈 (Ω+) = 𝜈 (Ω−) + 𝜇 (Ω−).

We derive that

max
𝐴⊆Ω

|𝜈 (𝐴) − 𝜇 (𝐴) | = 𝜈 (Ω−) − 𝜇 (Ω−) = 𝜇 (Ω+) − 𝜈 (Ω+) .

Therefore,

𝐷TV(𝜇, 𝜈) =
1
2
|𝜇 (Ω) − 𝜈 (Ω) |

=
1
2
(��𝜇 (Ω+) − 𝜈 (Ω+)

�� + |𝜇 (Ω−) − 𝜈 (Ω−) |
)

= max
𝐴⊆Ω

|𝜈 (𝐴) − 𝜇 (𝐴) | .

□

1.2 Coupling lemma

Intuitively, coupling is a process that binds several stochastic processes. Here’s the definition.

Definition 3. Let 𝜇 and 𝜈 be two distributions on the same space Ω. Let𝜔 be a distribution on the space Ω×Ω.
If (𝑥,𝑦) ∼ 𝜔 satisfies 𝑥 ∼ 𝜇 and 𝑦 ∼ 𝜈 , then 𝜔 is called a coupling of 𝜇 and 𝜈 .

In other words, the marginal probabilities of the disjoint distribution 𝜔 are 𝜇 and 𝜈 respectively. A
special case is when 𝑥 and 𝑦 are independently. However, in many applications, we want 𝑥 and 𝑦 to be
correlated while keeping their respect marginal probabilities correct.

We now give a toy example about how to construct different couplings on two fixed distributions.
There are two coins: the first coin has probability 1

2 for head in a toss and 1
2 for tail, and the second coin

has probability 1
3 and

2
3 respectively. We now construct two couplings as follows.

𝑥

prob 𝑦
HEAD TAIL

HEAD 1/3 1/6
TAIL 0 1/2

Table 1: A first coupling

𝑥

prob 𝑦
HEAD TAIL

HEAD 1/6 1/3
TAIL 1/6 1/3

Table 2: A second coupling
The table defines a joint distribtion and the sum of a certain row/column corresponds to a marginal

probability. It is clear that both table are couplings of the two coins. Among all the possible couplings,
sometimes we are interested in the one who is “mostly coupled”.
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Lemma 4 (Coupling Lemma). Let 𝜇 and 𝜈 be two distributions on a sample space Ω. Then for any coupling
𝜔 of 𝜇 and 𝜈 it holds that,

Pr(𝑥,𝑦)∼𝜔 [𝑥 ≠ 𝑦] ≥ 𝐷TV(𝜇, 𝜈).

And furthermore, there exists a coupling 𝜔∗ of 𝜇 and 𝜈 such that

Pr(𝑥,𝑦)∼𝜔∗ [𝑥 ≠ 𝑦] = 𝐷TV(𝜇, 𝜈).

Proof. For finite Ω, designing a coupling is equivalent to filling a Ω × Ω matrix so that the marginals are
correct.

We can learn that

Pr [𝑥 = 𝑦] =
∑
𝑡 ∈Ω

Pr [𝑥 = 𝑦 = 𝑡]

≤
∑
𝑡 ∈Ω

min(Pr [𝑥 = 𝑡] , Pr [𝑦 = 𝑡]) .

Thus,

Pr [𝑥 ≠ 𝑦] ≥ 1 −
∑
𝑡 ∈Ω

min(Pr [𝑥 = 𝑡] , Pr [𝑦 = 𝑡])

=
∑
𝑡 ∈Ω

(Pr [𝑥 = 𝑡] −min (Pr [𝑥 = 𝑡] , Pr [𝑦 = 𝑡]))

= max
𝐴⊆Ω

(𝜇 (𝐴) − 𝜈 (𝐴))

= 𝐷TV(𝜇, 𝜈) .

By taking Pr [𝑥 = 𝑦 = 𝑡] = min(Pr [𝑥 = 𝑡] , Pr [𝑦 = 𝑡]), we can achieve the equality above. □

The coupling lemma provides a way to upper bound the distance between two distributions: For any
two distributions 𝜇 and 𝜈 , we can construct a coupling 𝜔 and sample (𝑥,𝑦) ∼ 𝜔 . The upper bound for
Pr [𝑥 ≠ 𝑦] is an upper bound for 𝐷TV(𝜇, 𝜈). The coupling lemma tells us this upper bound is tight, as long
as you are able to find the optimal coupling.

1.3 Coupling of Two Markov Chains

We can also couple two random walks / Markov chains.

Definition 5. Consider two copies of the chain 𝑃 that satisfies:

• The initial distribution is 𝜇0 and 𝜈0.

• 𝜇𝑇𝑡 = 𝜇𝑇0 𝑃
𝑡 and 𝜈𝑇𝑡 = 𝜈𝑇0 𝑃

𝑡 .

A coupling of the two chains is joint distribution𝜔 of {𝜇𝑡 }𝐼 ≥0 and {𝜈𝑡 }𝑡 ≥0 that satisfies the following condition.
{(𝑋𝑡 , 𝑌𝑡 )}𝑡 ≥0 ∼ 𝜔 is a pair of processes such that

• ∀𝑎, 𝑏 ∈ Ω, Pr [𝑋𝑡+1 = 𝑏 | 𝑋𝑡 = 𝑎] = 𝑃 (𝑎, 𝑏)

• ∀𝑎, 𝑏 ∈ Ω, Pr [𝑌𝑡+1 = 𝑏 | 𝑌𝑡 = 𝑎] = 𝑃 (𝑎,𝑏)
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• ∀𝑡 ≥ 0, 𝑋𝑡 = 𝑌𝑡 =⇒ 𝑋𝑡 ′ = 𝑌𝑡 ′ for all 𝑡 ′ > 𝑡 .

Therefore, marginally {𝑋𝑡 } and {𝑌𝑡 } are both chain 𝑃 . We additionally require that two chains coalesce
once they meet.

We can use the coupling of Markov chains to analyze the rate of convergence of Markov chains. If
we are able to couple two Markov chains so that they coalesce quickly, then we can apply the coupling
lemma to upper bound the distance between the distance between the two chains. Let us first use this tool
to prove the fundamental theorem of Markov chains again.

Theorem 6 (Fundamental Theorem via Coupling). If a finite chain 𝑃 is irreducible and aperiodic, then it has
a unique stationary distribution 𝜋 . Moreover, for any initial distribution 𝜇, it holds that

lim
𝑡→∞

𝜇𝑇𝑃𝑡 = 𝜋𝑇

Proof. We already know that 𝑃 has a stationary distribution 𝜋 . What we would like to show is that for all
starting distribution 𝜇0, it holds that

lim
𝑡→∞

𝐷TV(𝜇𝑡 , 𝜋) = 0 ,

where 𝜇T𝑡 = 𝜇T0𝑃
𝑡 .

Suppose that {𝑋𝑡 } and {𝑌𝑡 } are two identical Markov chains starting from different distribution, where
𝑌0 ∼ 𝜋 while 𝑋0 is generated from an arbitrary distribution 𝜇0.

Now we have two sequence of random variables:

𝜇0 𝜇1 𝜇𝑡
≀ ≀ ≀
𝑋0 → 𝑋1 → 𝑋2 → · · · → 𝑋𝑡 → 𝑋𝑡+1 → · · ·

𝑌0 → 𝑌1 → 𝑌2 → · · · → 𝑌𝑡 → 𝑌𝑡+1 → · · ·
≀ ≀ ≀
𝜋 𝜋 𝜋

The coupling lemma establishes the connection between the distance of distributions and the discrepancy
of random variables. To show that 𝐷TV(𝜇𝑡 , 𝜋) → 0, it is sufficient to construct a coupling 𝜔𝑡 of 𝜇𝑡 and 𝜋
and then compute Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ].

Here we give a simple coupling. Let (𝑋𝑡 , 𝑌𝑡 ) ∼ 𝜔𝑡 and we construct 𝜔𝑡+1. If 𝑋𝑡 = 𝑌𝑡 for some 𝑡 ≥ 0,
then let 𝑋𝑡 ′ = 𝑌𝑡 ′ for all 𝑡 > 𝑡 ′, otherwise 𝑋𝑡+1 and 𝑌𝑡+1 are independent. Namely, {𝑋𝑡 } and {𝑌𝑡 } are two in-
dependent Markov chains until𝑋𝑡 and𝑌𝑡 reach the same state for some 𝑡 ≥ 0, and once they meet together
then they move together forever. The coupling lemma tells us that 𝐷TV(𝜇𝑡 , 𝜋) ≤ Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ].

The property of irreducibility implies that

∀ 𝑖, 𝑗, ∃𝑛 s.t. 𝑃𝑛 (𝑖, 𝑗) > 0 .

We claim that combining with aperiodicity,

∃𝑛 s.t. ∀ 𝑖, 𝑗, 𝑃𝑛 (𝑖, 𝑗) > 0 .

Since the state space Ω is finite, it is sufficient to show that

∀ 𝑖, 𝑗, ∃ 𝑡𝑖, 𝑗 s.t. ∀𝑛 > 𝑡𝑖, 𝑗 , 𝑃𝑛 (𝑖, 𝑗) > 0 .
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Suppose that there are 𝑠 loops of length 𝑐1, 𝑐2, . . . , 𝑐𝑠 starting from and ending at state 𝑖 . Then we have

gcd(𝑐1, 𝑐2, . . . , 𝑐𝑠) = 1 .

Thus, by Bézout’s identity there exists 𝑥1, 𝑥2, . . . , 𝑥𝑠 ∈ ℤ such that

𝑐1𝑥1 + 𝑐2𝑥2 + · · · 𝑐𝑠𝑥𝑠 = 1 .

This implies the following lemma, a proof can be found in e.g. [LP17]

Lemma 7. For sufficiently large 𝑏, there exists 𝑦1, 𝑦2, . . . , 𝑦𝑠 ∈ ℕ such that

𝑐1𝑦1 + 𝑐2𝑦2 + · · · 𝑐𝑠𝑦𝑠 = 𝑏.

The claim then follows from the lemma.
Now we know that ∃𝑛 s.t. ∀ 𝑖, 𝑗 , 𝑃𝑛 (𝑖, 𝑗) > 0. Then we define

𝜃 ≜ min
𝑥0,𝑦0∈S

Pr [𝑋𝑛 = 𝑌𝑛 | 𝑋0 = 𝑥0, 𝑌0 = 𝑦0] .

For simplicity, we use Pr𝑥0,𝑦0 [·] to denote the conditional probability Pr [ · | 𝑋0 = 𝑥0, 𝑌0 = 𝑦0] from now
on.

Fix 𝑧 ∈ Ω. Let
𝛼 = min

𝑤∈Ω
P𝑛 (𝑤, 𝑧) > 0 ,

and for any 𝑡 ≥ 0 and 𝑧 ′ ∈ Ω,

𝛽𝑡,𝑧′ = Pr𝑥0,𝑦0 [𝑋𝑡 = 𝑌𝑡 = 𝑧 ′ ∧ 𝑋𝑡 ′ ≠ 𝑌𝑡 ′ for all 𝑡 ′ < 𝑡] .

By the Markov property and the independence of {𝑋𝑡 } and {𝑌𝑡 } before 𝑋𝑡 = 𝑌𝑡 , we obtain that

Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑌𝑛]
≥ Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑌𝑛 = 𝑧]
= Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑌𝑛 = 𝑧 ∧ ∀ 𝑡 < 𝑛,𝑋𝑡 ≠ 𝑌𝑡 ] + Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑌𝑛 = 𝑧 ∧ ∃ 𝑡 < 𝑛,𝑋𝑡 = 𝑌𝑡 ]

=

(
𝑃𝑛 (𝑥0, 𝑧) · 𝑃𝑛 (𝑦0, 𝑧) −

𝑛−1∑
𝑡=0

∑
𝑧′

𝛽𝑡,𝑧′ ·
(
𝑃𝑛−𝑡 (𝑧 ′, 𝑧)

)2) + 𝑛−1∑
𝑡=0

∑
𝑧′

𝛽𝑡,𝑧′ · 𝑃𝑛−𝑡 (𝑧 ′, 𝑧)

≥ 𝑃𝑛 (𝑥0, 𝑧) · 𝑃𝑛 (𝑦0, 𝑧) ≥ 𝛼2 .

Hence 𝜃 > 0. By the coupling and the Markov property, we have

Pr𝑥0,𝑦0 [𝑋2𝑛 ≠ 𝑌2𝑛] =
∑

𝑥𝑛≠𝑦𝑛

Pr𝑥0,𝑦0 [𝑋2𝑛 ≠ 𝑌2𝑛, 𝑋𝑛 = 𝑥𝑛, 𝑌𝑛 = 𝑦𝑛]

=
∑

𝑥𝑛≠𝑦𝑛

Pr𝑥𝑛,𝑦𝑛 [𝑋𝑛 ≠ 𝑌𝑛] · Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑥𝑛, 𝑌𝑛 = 𝑦𝑛]

≤ (1 − 𝜃 )
∑

𝑥𝑛≠𝑦𝑛

Pr𝑥0,𝑦0 [𝑋𝑛 = 𝑥𝑛, 𝑌𝑛 = 𝑦𝑛] ≤ (1 − 𝜃 )2 ,

and so on (Pr𝑥0,𝑦0 [𝑋𝑘𝑛 ≠ 𝑌𝑘𝑛] ≤ (1 − 𝜃 )𝑘 ). It yields directly that

Pr [𝑋𝑡 ≠ 𝑌𝑡 ] =
∑
𝑥0,𝑦0

𝜇0(𝑥0) · 𝜋 (𝑦0) · Pr𝑥0,𝑦0 [𝑋𝑡 ≠ 𝑌𝑡 ] → 0

as 𝑡 → ∞. □
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2 Mixing Time

If the reader carefully examines our proof of the fundamental theorem of Markov chains using coupling
above, it can be noticed that the proof provides a way to bound the rates of convergence. The larger the
parameter 𝜃 , the faster the chain converges. The parameter 𝜃 is a lower bound of the probability that two
chains meet at time 𝑡 . Therefore, if we are able to construct a coupling so that the two chains meet fast,
we get a good upper bound on the convergence time.

To formally explain the idea, we first define the notion of mixing time. For any 0 < 𝜀 < 1,

𝜏mix(𝜀) ≜ max
𝜇0

min
𝑡

𝐷TV

(
𝜇𝑇0 𝑃

𝑡 , 𝜋
)
< 𝜀,

which describes the first time 𝑡 such that the total variation distance between 𝑋𝑡 and 𝜋 is at most 𝜀 for any
initial 𝜇0. Mixing time is a measure of the rate of convergence. Sometimes we simply use 𝜏mix to denote
𝜏mix( 14 ).

We show that the coupling lemma can imply a bound for the mixing time. Let {𝑋𝑡 } and {𝑌𝑡 } be two
Markov chains with same transition rule but different initial distributions. If we can find a coupling of two
chains such that for some 𝑡 > 0,

Pr [𝑋𝑡 ≠ 𝑌𝑡 ] ≤ 𝜀,

then by the coupling lemma we can conclude that 𝜏mix(𝜀) ≤ 𝑡 . This simple fact is a powerful tool and we
will see many of its applications.

2.1 Random walk on hypercube

Let’s start with a simple example. Consider the random walk on the 𝑛-cube. The state space Ω = {0, 1}𝑛 ,
and we start from a point 𝑋0 ∈ Ω. In each step,

1. With probability 1
2 do nothing.

2. Otherwise, pick 𝑖 ∈ [𝑛] uniformly at random and flip 𝑋 (𝑖).

It’s equivalent to the following process:

1. Pick 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1} uniformly at random.

2. Change 𝑋 (𝑖) to 𝑏.

We want to know how many steps should we do to make it 𝜀-far from uniformly random, i.e. 𝜏mix(𝜀). For
two walks 𝑋𝑡 , 𝑌𝑡 , we can couple them by choosing the same 𝑖, 𝑏 in every step. Then, the problem for the
worst case, 𝑋0(𝑖) ≠ 𝑌0(𝑖) for all 𝑖 , is exactly the Coupon Collector model. From previous lectures we know
that

Pr [𝑋𝑡 ≠ 𝑌𝑡 ] ≤ 𝑒−𝑐 for 𝑡 ≥ 𝑛 log𝑛 + 𝑐𝑛,

so by the coupling lemma it holds that

𝜏mix(𝜀) ≤ 𝑛 log𝑛 + 𝑛 log 𝜀−1.

Let’s modify the process a bit by changing 1
2 into

1
𝑛+1 , i.e. w.p.

1
𝑛+1 do nothing, to make the ‘lazy’ walk

more active. Curious reader may find it strange to keep a loop with low probability. Actually the main
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aim is to keep the Markov chain aperiodic: if we flip one bit w.p. 1 in each step, two walks with different
parities can never be mixed up.

Now in this case, we describe another coupling of 𝑋𝑡 , 𝑌𝑡 . Without loss of generality, we can reorder
the entries of two vectors so that all disagreeing entries come first. Namely there exists an index 𝑘 such
that 𝑋𝑡 (𝑖) ≠ 𝑌𝑡 (𝑖) if 𝑖 ∈ [𝑘], and 𝑋𝑡 (𝑖) = 𝑌𝑡 (𝑖) otherwise. Our coupling is as follows:

• If 𝑘 = 0, 𝑌 acts the same as 𝑋 .

• If 𝑘 = 1, 𝑌 acts the same as 𝑋 except when 𝑋 flips the first entry, 𝑌 does nothing and vice versa.

• For 𝑘 > 2, we distinguish between whether 𝑋 flip indices in [𝑘]:

1. If 𝑋 did nothing or flipped one of [𝑛]\[𝑘]: 𝑌 acts the same.
2. If 𝑋 flipped 𝑖 ∈ [𝑘]: 𝑌 flips (𝑖 mod 𝑘) + 1, i.e. 1 ↦→ 2, 2 ↦→ 3, · · · , 𝑘 − 1 ↦→ 𝑘, 𝑘 ↦→ 1.

It’s clear that the above is indeed a coupling. In fact, this coupling is like a “doubled speed” Coupon
Collector, since in the case 𝑘 > 2 we can always collect two coupons at a time when lady luck is smiling.
We therefore state without a rigorous proof that

𝜏mix ≤
1
2
𝑛 log𝑛 +𝑂 (𝑛) .

The above two examples are easy to analyze since we can reduce the coalesce time of two chains to
problems we are familiar with. To analyze couplings in general, we often require the coupling enjoy the
property that the two chains are expected closer after every step. Therefore we impose a distance 𝑑 (·, ·)
between two states and require that

∀𝑡, E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1 | (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼) · 𝑑 (𝑋𝑡 , 𝑌𝑡 ) .

In other words, {𝑑 (𝑋𝑡 , 𝑌𝑡 )}𝑡 ≥0 is a supermartingale.
Without loss of generality, we assume that min𝑥,𝑦∈Ω:𝑥≠𝑦 𝑑 (𝑥,𝑦) = 1 when Ω is finite. By coupling

lemma

𝐷TV(𝑋𝑡 , 𝑌𝑡 ) ≤ Pr [𝑋𝑡 ≠ 𝑌𝑡 ]
= Pr [𝑑 (𝑋𝑡 , 𝑌𝑡 ) > 0]
= Pr [𝑑 (𝑋𝑡 , 𝑌𝑡 ) ≥ 1]
≤ E [𝑑 (𝑋𝑡 , 𝑌𝑡 )]
≤ (1 − 𝛼)𝑡 · 𝑑 (𝑋0, 𝑌0) ≤ 𝜀.

This implies

𝜏mix(𝜀) ≤ (log 𝜀−1 + log𝑑 (𝑋0, 𝑌0)) · log
1

1 − 𝛼
.

2.2 Sampling proper colorings

Let’s consider the problem of sampling proper colorings. Given a graph 𝐺 = (𝑉 , 𝐸), we want to dye the
graph using𝑞 colors under the condition that no two adjacent vertices share the same color. More formally,
a coloring of 𝐺 is a mapping 𝑐 : 𝑉 ↦→ [𝑞], and we call it proper iff ∀(𝑢, 𝑣) ∈ 𝐸, 𝑐 (𝑢) ≠ 𝑐 (𝑣). The problem
is NP-hard in general. However, for 𝑞 > Δ there’s always at least one suitable solution and can be easily
obtained by a greedy algorithm, where Δ is the maximum degree of the graph.

Consider the following Markov chain to sample proper colorings:
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1. Pick 𝑣 ∈ 𝑉 and 𝑐 ∈ [𝑞] uniformly at random.

2. Recolor 𝑣 with 𝑐 if possible.

The chain is aperiodic since self-loops exist in the walk. For 𝑞 ≥ Δ + 2, the chain is irreducible. The
bound 𝑞 ≥ Δ + 2 is tight for irreducibility since when 𝑞 = Δ + 1, each proper coloring of complete graph
is frozen. It is still an open problem if the mixing time of the chain is polynomial in the size of the graph
under the condition 𝑞 ≥ Δ + 2. The best bound so far requires that 𝑞 ≥ ( 116 − 𝜀)Δ. Here, we shall give a
rapid mixing proof when 𝑞 > 4Δ using the method of coupling.

Suppose 𝑋𝑡 , 𝑌𝑡 are two proper colorings. We define the distance 𝑑 (𝑋𝑡 , 𝑌𝑡 ) as their Hamming distance,
i.e. the number of vertices colored differently in two colorings. Our coupling of two chains is that we
always choose the same 𝑣, 𝑐 in each step. The distance between two colorings can change at most 1 since
only 𝑣 is affected. The possible changes can be divided into two kinds:

1. Good move: 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and both change into 𝑐 successfully. It will decrease distance by 1.

2. Bad move: 𝑋𝑡 (𝑣) = 𝑌𝑡 (𝑣), one succeeds and one fails in the changing. It will increase distance by 1.

Figure 2: An illustration of moves.

Consider the probabilities of two types of moves. For good moves, w.p. 𝑑 (𝑋𝑡 ,𝑌𝑡 )
𝑛 , 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and

there are at least 𝑞 − 2Δ choices of 𝑐 to make it a good move. So

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1] = Pr(𝑣,𝑐) ∈𝑉×[𝑞 ] [(𝑣, 𝑐) is a good move] ≥ 𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 𝑞 − 2Δ
𝑞

.

For bad moves, there exists a neighbor 𝑤 of 𝑣 such that its color is different in two colorings, and in one
coloring𝑤 is of color 𝑐 . By a counting argument, we have

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] = Pr(𝑣,𝑐) ∈𝑉×[𝑞 ] [(𝑣, 𝑐) is a bad move] ≤ Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 2
𝑞
.

Therefore,

E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] − Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1]

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 ) +
Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 2
𝑞
− 𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 𝑞 − 2Δ

𝑞

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 ) (1 −
𝑞 − 4Δ
𝑛𝑞

).

8



In the case 𝑞 > 4Δ,

𝐷TV ≤
(
1 − 1

𝑛𝑞

)𝑡
𝑛 ≤ 𝜀.

The mixing time is therefore bounded by

𝜏mix(𝜀) ≤ 𝑛𝑞(log𝑛 + log 𝜀−1) .
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