
Advanced Algorithms XI (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Xinyu Mao, Ze Tang

Last modified on Nov 16, 2020

Take what you have gathered from
coincidence.

It’s all over now, baby blue
Bob Dylan

Brief Review. During the lecture on Nov. 16, we first presented a proof for the asymmetric version of
Lovász local lemma(theorem 3). Next, we studied the algorithmic version of Lovász Local Lemma(theorem 4),
which tells us how to find a satisfying assignment for CNF formula with a simple randomized algorithm.

1 Lovász Local Lemma

For a (undirected) graph G = (V ,E) and v ∈ V , define

N (v) := {u ∈ V : uv ∈ E}, N +(v) := N (v) ∪ {v}.

Let A := {A1,A2, . . . ,Am} be a set of ‘bad events’.

Definitions 1. A graph G = (V ,E) is the dependency graph of A if

1. V = A;

2. For all A ∈ A, A is independent from A \ N +(A).

Theorem 2 (Lovász Local Lemma, symmetric version). Let ∆ be the maximum degree of the dependency
graph. If the dependency graph of A satisfies

∀Ai ∈ A, Pr [Ai] ≤ p < 1.

If it holds that 4∆p < 1, then

Pr

!
m"
i=1

Ai

#
> 0.

1

Theorem 3 (Lovász Local Lemma, asymmetric version). Let x : A → (0, 1) be a function such that

Pr [A] ≤ x(A)
$

B∈N (A)
(1 − x(B)) ,∀A ∈ A.

Then

Pr

!
m"
i=1

Ai

#
> 0.

Proof. Let S ⊆ [m], FS =
%

i ∈S Ai .
We start with showing that

∀i ! S, Pr [Ai |FS] ≤ x(Ai) (1)

by induction on |S |.

Base step. In the case of S = ∅,

Pr [Ai] ≤ x(Ai)
$

B∈N (Ai)
(1 − x(B)) ≤ x(Ai).

Induction step. Write S1 := N (Ai), S2 := A\N +(Ai). We shall give an upperbound of Pr [Ai |FS]. Observe
that

Pr [Ai |FS] = Pr
&
Ai

''FS1 ∩ FS2
(

=
Pr

&
Ai ∩ FS1 ∩ FS2

(
Pr

&
FS1 ∩ FS2

(
=

Pr
&
Ai ∩ FS1

''FS2 (
Pr

&
FS1

''FS2 ((by dividing out Pr
&
FS2

(
)

=:
X

Y
.

On one hand, we try to get a upperbound of X :

X = Pr
&
Ai ∩ FS1

''FS2 (
≤ Pr

&
Ai

''FS2 (
= Pr [Ai] (Ai and S2 are irrelevent)

≤ x(Ai)
$

B∈N (Ai)
(1 − x(B)) (by condition of the theorem 3).

2

Then we will find a lowerbound of Y by induction:

Y = Pr
&
FS1

''FS2 (

= Pr

!
r"
j=1

Aj

''''' FS2
#

(WOLG, let S1 = {1, 2, . . . , r })

=

r$
j=1

Pr
)****+
Aj

''''''
"
k<j

Ak ∩ FS2

,----.
=

r$
j=1

/0
1
1 − Pr

)****+
Aj

''''''
"
k<j

Ak ∩ FS2

,----.
23
4

≥
$

B∈N (Ai)
(1 − x(B)) (by induction).

This establishes eq. (1).
Here comes the last strike:

Pr

!
m"
i=1

Ai

#
=

m$
i=1

Pr

!
Ai

'''''
"
j<i

Aj

#

=

m$
i=1

5
1 − Pr

&
Ai

''F[i−1] (6

≥
m$
i=1

(1 − x(Ai)) (by eq. (1))

> 0.

□

Connection between two versions. If we choose x as

x(Ai) =
1

∆ + 1
, (2)

and use the condition of theorem 2, we can get a bound which is similar but a different from theorem 2.
Note that

x(A)
$

B∈N (A)
(1 − x(B)) = 1

∆ + 1

$
B∈N (A)

7
1 − 1

∆ + 1

8
(by eq. (2))

=
1

∆ + 1

7
1 − 1

∆ + 1

8deg(A)

≥ 1
∆ + 1

7
1 − 1

∆ + 1

8∆

≥ 1
∆ + 1

· e−1

.

If we let
1

∆ + 1
· e−1 ≥ p

3

then we will satisfy the condition of theorem 3:

x(A)
$

B∈N (A)
(1 − x(B)) ≥ 1

∆ + 1
· e−1 ≥ p ≥ Pr [A] ,

That is, if the Dependency Graph of A satisfies

∀Ai ∈ A, Pr [Ai] ≤ p < 1,

then

e(∆ + 1)p < 1 implies Pr

!
m"
i=1

Ai

#
> 0.

2 Algorithmic Lovász local lemma (for SAT)

Let ϕ :=
9m

i=1Ci ba a CNF formula with free variables V := {x1,x2, . . . ,xn}. An assignment of ϕ is a
function f : V → {0, 1}. We say assignment f satisfies ϕ, denoted by f |= ϕ, if ϕ is satisfied with xi taking
the value f (xi) for every i ∈ [n].

LetAi be the event that the clauseCi violates (i.e.,Ci is not satisfied). If the set of eventsAϕ := {Ai }i ∈[m]
meets the condition of theorem 3, we can assert that ϕ is satisfiable.

For A ∈ Aϕ , the clause corresponding to A is denoted by clause(A).

2.1 The algorithm that tells how to avoid bad events

Now we go one step further: we shall devise an efficient algorithm such that ifAϕ satisfies the conditions
in theorem 3, the algorithm outputs a satisfying assignment. As is shown in algorithm 1, the idea is simple:
take a random assignment, and adjust it locally if ϕ is not satisfied.

Algorithm 1: Randomized algorithm for SAT based on local corrections
Input: a CNF ϕ :=

9m
i=1Ci with V := {x1,x2, . . . ,xn} as variables.

Output: an assignment f : V → {0, 1} such that f |= ϕ.
pick a random assignment f ;
while f ∕|= ϕ do

pick an arbitrary violated clause Cj ;
update f by resampling variables in Cj ;

end
return f ;

As usual, let N (Ai) be the neighbors ofAi in the dependency graph ofAϕ . Then we have the following
statement about algorithm 1.

Theorem 4 (Algorithmic Lovász local lemma (for SAT)). Let x : Aϕ → (0, 1) be a function such that

Pr [A] ≤ x(A)
$

B∈N (A)
(1 − x(B)) ,∀A ∈ Aϕ .

Then each Ci is resampled at most an expected x (Ai)
1−x (Ai) times in algorithm 1 before it returns a satisfying

assignment of ϕ.

4

Thus, the expected total number of resampling steps is at most
:m

i=1
x (Ai)

1−x (Ai) . This indicates algorithm
1 runs in expected polynomial time, that is, it is a Las Vegas algorithm.

In Moser and Tardos’s original paper [1], algorithm 1 and theorem 4 are stated for general Constraint
Satisfaction Problem (CSP). Here we only prove it for SAT for the sake of simplicity.

To present a proof of theorem 4 is a heavy work, and hence we break it into several parts.

2.2 Execution log and witness tree

Execution log. To analyze algorithm 1, we record which clause is resampled at each step. Formally, the
log of execution is a function C : N → Aϕ where clause(C(i)) is resampled in step i . If the algorithm
terminates after t iterations, then C(i) is undefined for i > t .

Witness tree. For an arbitrary set S , an S-labeled rooted tree is a pair (T ,σ), whereT is a rooted tree with
a labelling σ : V (T) → S of its vertices. A witness tree is a Aϕ -labeled rooted tree τ = (T ,σ) such that if v
is child of u in T , then σ (v) ∈ N +(σ (u)). For simplicity, write [v] for σ (v) and V (τ) := V (T). See fig. 1 for
a simple example. Loosely speaking, [v] is the label of v .

Figure 1: Simple dependency graph, a Possible Log C and the witness tree τC (6).

Given the log C , we now associate with each step t ∈ N a witness tree τC (t) constructed iteratively as
follows.

1. At the beginning, τC (t) consists of a single vertex labelled C(t).

2. For each time i = t − 1, t − 2, . . . , 1:

• if there is a vertex v ∈ V (τC (t)) such that C(i) ∈ N +([v]), choose such a v with maximum
depth; if there are several such v’s with the same depth, just choose one arbitrarily.

• if there is no such a v , skip this iteration;
• renew τC (t) by attaching a new child labeled C(i) to v .

We say a witness tree τ appears inC if τ = τC (t) for some t ∈ N. A witness tree τ is proper if for every
v ∈ V (τ), the children of v have different labels. The following observation obviously follows from the
construction of τC (t).

Lemma 5. For every witness tree τ , if τ appears in C , then τ is proper.

5

2.3 Get an upper bound by coupling

Coupling

A coupling of two probability distributions µ and ν is a pair of random variables (X ,Y) defined on a
single probability space such that the marginal distribution of X is µ and the marginal distribution
of Y is ν . That is, a coupling (X ,Y) satisfies Pr [X = x] = µ(x) and Pr [Y = y] = ν (y).

The notion of coupling provides a way to compare distributions. We shall use this to obtain the fol-
lowing bound.

Lemma 6. For any witness tree τ ,

Pr [τ appears in C] ≤
$

v ∈V (τ)
Pr [[v]] . (3)

Proof. Fix a witness tree τ . We consider a procedure called τ -check, as is shown in algorithm 2. It is easy
to see the probability that τ -check returns Pass is exactly

;
v ∈V (τ) Pr [[v]]. We shall prove that

Pr [τ appears in C] ≤ Pr [τ -check returns Pass] ,

which implies eq. (3) immediately.

Algorithm 2: τ -check
Input: a witness tree τ
Output: Pass or Fail
Let v1,v2, . . . ,vs be the vertices in τ in an order of decreasing depth ;
foreach i ∈ [s] do

assign random values for variables in clause([v]) ;
if [v] does not happen(i.e, the random values are satisfying) then

return Fail
return Pass

We will now couple the process of τ -check and the process of independently resampling each clause in
τ . This is achieved by using the idea of resampling table.

Suppose that the algorithm uses the randomness R : [n] × N → {0, 1}. That is, when variable xi ∈ V
is resampled for the j-th time, the result of the coin toss is R(i, j). R is called the resampling table and it is
assumed that the table is fixed before the coupling.

Assume that τ appears inC , say, τ = τC (t!). We need to show that τ -check returns Pass (with random-
ness R). Suppose that xi is resampled when vj ∈ V (τ) is visited by τ -check. Let rec(xi ,vj) be the number
of resampling for xi before visiting vj . Clearly,

rec(xi ,vj) = {k ∈ [j − 1] : xi ∈ var([vk])},

where var(A) is the set of variables in clause(A). Let time(vj) be the time when vj is added to τC (t!).
We claim that x j = R(i, |rec(xi ,vj)|) at step time(vj) (before this resampling). Indeed, at time t =
1, 2, . . . , time(vj) − 1, xi is resampled at step t iff t = time(vk) for some k ∈ rec(xi ,vj). As the τ -check
has these exact same values for the variables in var([vj]) when considering vj , it finds that clause([v]) is
violated as well. This finishes the proof. □

6

We remark that our way of constructing witness tree is not crucial for eq. (3) to hold. The reason that
we need such a construction is that witness trees encode the execution of the algorithm in a compact way.
Therefore, a good upper bound to the number of distinct witness trees is a good upper bound for the length
of the execution log (and hence the runtime of the algorithm). We will obtain such an upper bound in the
next subsection.

2.4 Generating witness trees by Galton-Wltson Process

Fix an eventA! ∈ Aϕ and consider the followingmultitype Galton-Watson branching process for generating
a proper witness tree having its root labelled A!.

1. In the first round, we produce a singleton vertex labelled A!.

2. In ith round (i ≥ 2), for each vertex v born in the (i − 1)-th round and each B ∈ N +([v]), attach a
new child labelled B to v with probability x(B).

3. All the choices involved are independent.

Let x ′(A) := x(A);B∈N (A)(1 − x(B)).

Lemma 7. Let τ be a fixed proper witness tree with its root vertex labeled A!. Then

pt := Pr [the GW process yields exactly τ] = 1 − x(A!)
x(A!)

$
v ∈V (τ)

x ′([v]).

Proof. For each v ∈ V (τ), define

Wv := {A ∈ N +([v]) : no child of v is labeled A}.

Considering each vertex independently, we get

pt =
1

x(A!)
$

v ∈V (τ)

<
x([v])

$
A∈Wv

(1 − x(A))
=
,

where the term 1
x (A!) accounts for the fact the the root is always born. Next we replaceWv by N +([v]):

pτ =
1 − x(A!)
x(A!)

$
v ∈V (τ)

/00
1

x([v])
1 − x([v])

$
A∈N +([v])

(1 − x(A))
233
4
. (4)

Intuitively, in eq. (4), each node assumes that no child is born (see the underlined part), and each node
contributes a term x ([v])

1−x ([v]) , saying that ‘oh, no, in fact I was born!’. Next, replacing N +([v]) by N ([v]) in
eq. (4), we have

pτ =
1 − x(A!)
x(A!)

$
v ∈V (τ)

/0
1
x([v])

$
A∈N ([v])

(1 − x(A))23
4
=

1 − x(A!)
x(A!)

$
v ∈V (τ)

x ′([v]),

completing the proof. □

7

Galton-Watson Process

A Galton-Watson process is a stochastic process (Xn) which evolves according to the recurrence
formula X0 = 1 and

Xn+1 =

Xn>
i=1

Z (n)
i ,

where (Z (n)
i : i,n ∈ N) is a set of independent and I.I.D.N-valued random variables. See the Chapter

0 of [2] for an intriguing discussion.

2.5 The coup de grace

Now everything is ready.

Proof of theorem 4. Let C be the log of execution. Let NA be the random variable that counts how many
times the clause(A) is resampled. Our goal is to bound E [NA] from above.

Define
TA := {τ : τ is a proper witness tree whose root is labelled A}.

The root of τC (t) is labelled A iff clause(A) is resampled at time t , and thus

NA =
>
τ ∈TA

1{τ appears in C } .

Combining lemma 6, we have

E [NA] =
>
τ ∈TA

Pr [τ appears in C] ≤
>
τ ∈TA

$
v ∈V (τ)

Pr [[v]] ≤
>
τ ∈TA

$
v ∈V (τ)

x ′([v]), (5)

where the last inequality follows from the condition of the theorem 4.
Recall that lemma 7 says $

v ∈V (τ)
x ′([v]) = x(A)

1 − x(A) · pτ .

Plugging this into eq. (5) yields

E [NA] ≤
x(A)

1 − x(A)
>
τ ∈TA

pτ ≤ x(A)
1 − x(A) . (6)

The last inequality of eq. (6) follows from the following simple fact:
>
τ ∈TA

pτ ≤
>

τ is a possible result of GW process
pτ = 1.

We are happy to see that eq. (6) is exactly what we set out to prove. □

8

References

[1] Robin A Moser and Gábor Tardos, A constructive proof of the general lovász local lemma, Journal of
the ACM (JACM), 57 (2010), pp. 1–15. 5

[2] D. Williams, Probability with Martingales, Cambridge mathematical textbooks, Cambridge University
Press, 1991. 8

9

