
Advanced Algorithms X (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Haobo Ma, You Lv

Last modified on Nov 12, 2020

In this lecture, we first introduceWald’s equation which is a useful tool for analyzing cost of algorithms
while the number of iterations is itself random. We prove it using OST. Then we talk about the probabilistic
method in the algorithm design. Finally, we introduce the Lovász Local Lemma.

1 Wald’s Equation

While analyzing randomized algorithms, it is common to meet following procedures:

Algorithm 1
1: while Cond do
2: Compute();
3: end while

Assume each calling of Compute() costs X time and the procedure terminates in T iterations where
both X and T are random variables. The total time cost is therefore N ≜

!T
i=1X . The question is how to

compute the E [N].
The Wald’s equation states a sufficient condition for E [N] = E [T] · E [X] to hold.

Theorem 1 (Wald’s Equation). If we have

• X1,X2, . . . are non-negative, independent, identically distributed random variables with distribution
same as X ;

• T is a stopping time for {Xt }t ≥1;

• E [T] ,E [X] < ∞.

Then E
"!T

i=1Xi
#
= E [T] · E [X].

The proof relies on the optional stopping theorem we met before:

Theorem 2. Let {Xt }t ≥0 be a martingale and τ be a stopping time with respect to {Ft }t ≥0. Then E [Xτ] =
E [X0] if at least one of the three following conditions holds:

(1) τ is bounded, or

(2) Pr [τ < ∞] = 1, and there is a finiteM such that |Xt | ≤ M for all t < τ , or

1

(3) E [τ] < ∞, and there is a constant c such that E [|Xt+1 − Xt | | Ft] ≤ c for all t < τ .

Proof of Theorem 1. For i ≥ 1, let Zi :=
!i

j=1(X j − E [X]). Then it is clear that {Zi }i≥1 is a martingale with
respect to {Fi }i≥1 where Fi = σ (X1, . . . ,Xi) is the sigma algebra generated by X1, . . . ,Xi . We have

E [|Zi+1 − Zi | |Fi] = E [|Xi+1 − E [X] | |Fi] ≤ E [Xi+1 + E [X] |Fi] ≤ 2E [X] .

Since we have that E[T],E[X] < ∞, the condition of Theorem 2 meets. This implies that E[ZT] =
E[Z1] = 0. On the otherhand, we have

0 = E [ZT] = E

$
T%
j=1

&
X j − E [X]

' (
= E

$
T%
i=1

Xi −T · E [X]
(
= E

$
T%
i=1

Xi

(
− E [T] · E [X] .

□

1.1 Applications of Wald’s Equation

Rolling dices

Let’s first consider the following process of tossing dices.

• Roll a dice to get X .

• Roll X independent dices and calculate the sum N .

It follows from Wald’s equation that

E [N] = E [X] · E [X] = 7
2
· 7
2
=

49
4
.

Routing

As shown in Figure 1, there are n senders and one receiver. Senders need to send packets to the receiver via
a single channel. Each sender will propose to send a packet to the receiver with probability 1

n per second.
However, if there are multiple packets proposed to send at the same time, all of them will fail. The problem
is to determine the expected time to wait until each sender successfully sends at least one packet.

2

Figure 1: n senders and one receiver

To solve this problem, we first let Xi be how long the receiver needs to get another packet after it has
received i − 1 packets (packets from the same sender also counts). And let T be the number of all packets
received when each sender has successfully sent one packet. Now we define:

N ≜
T%
i=1

Xi

It is clear that all Xi ’s are identically distributed. By Wald’s equation, E [N] = E [T] · E [X1]. The value of
E [T] is exactly what we need to calculate.

Each time the receiver receives a new packet, its sender is uniform in [n] as all senders are symmetric.
Therefore, T is a random variable we met in the coupon collector problem and its expectation E [T] =
nHn ≈ n logn. On the other hand, we have

Pr [X1 = 1] = n · 1
n

)
1 − 1

n

*n−1
≈ e−1.

X1 is a geometric variable, therefore E [X1] ≈ e and E [N] ≈ en logn.

2 The Probabilistic Method

In the class of Combinatorics, we have already learnt the probability method. To prove the existence of
some combinatorial structures, we can design a probability space and show that Pr [the object exists] > 0.
In computer science, an existence proof is not enough. We always need to find the object efficiently.

2.1 MaxCut

Given an undirected graph G = (V ,E), the max cut of G is the partition V = S ∪ S such that |E(S, S)| is
maximized.

Fact 1. Each graph G = (V ,E) contains a cut of size at least |E |
2

3

Proof. We can find a partition (S, S) by tossing a fair coin at each vertex v . If the coin gives HEAD, we
put v in S , otherwise, put v in S . We let X =

+++E(S, S)+++ be the number edges between S and S . Then

E [X] = !
e ∈E Pr [e is in the cut] = |E |

2 . So Pr
,
X ≥ |E |

2

-
> 0 □

Can we turn the existence proof into an algorithm to find such a cut? It is straightforward to turn the
argument into a Las-Vegas algorithm: Repeat generating random partition (S, S) until we meet one with
E(S, S) ≥ |E |

2 . Letp be the probability that our algorithm terminates in one round, i.e.,p = Pr
,+++E(S, S)+++ ≥ m

2

-
,

wherem = |E |. Then

m

2
= E [X] =

m%
i=0

i · Pr [X = i] ≤
.m
2
− 1

/
(1 − p) + pm.

So p ≥ 2
m+2 , and the expect running time of our algorithm is 1

p ≤ m+2
2 . Define the approximation

ratio of a maxcut algorithm A by α(A) = minG A(G)
OPT(G) , then we obtained a polynomial-time randomized

approximation algorithm with approximation ratio 0.5.

2.2 Derandomization

We can use the method of conditional expectation to get a deterministic algorithm. We use a random
variable Xi ∈ {−1, 1} to represent that node i is in S or S . Then

m

2
= E [X] = E [E [X | X1,X2, ...,Xn]]

(♥)
=

1
2
E [E [X | X1 = 1,X2, ...,Xn]] +

1
2
E [E [X | X1 = −1,X2, ...,Xn]] ,

where in (♥) we used the fact that all Xi are independent.
Then we know that either E [E [X | x1 = 1,x2, ...,xn]] ≥ m

2 or E [E [X | x1 = −1,x2, ...,xn]] ≥ m
2 . Since

we can calculate both conditional expectations efficiently in the same manner as we calculated E [X], we
can fix the value of X1 by choosing the one with greater conditional expectation. We can do the same to
fix the value of X2,X3, ...,Xn .

3 Lovász Local Lemma

Lovász Local Lemma is a powerful and widely used tool in the probabilistic method. In many problems, a
certain object exists if none of a family of bad events happens. We usually use B1, ...,Bn to denote the bad
events and need to prove Pr

,
B1 ∩ B2 ∩ ... ∩ Bn

-
> 0. Assume that Pr [Bi] = p < 1. Two extreme cases are

• ∀i ! j,Bi ∩ Bj = ∅. Then we have Pr
,
B1 ∩ B2 ∩ ... ∩ Bn

-
= 1 − np. Therefore, we need p < 1

n to

guarantee Pr
,
B1 ∩ B2 ∩ ... ∩ Bn

-
> 0.

• Events in {Bi }1≤i≤n are mutually independent. Then we have Pr
,
B1 ∩ B2 ∩ ... ∩ Bn

-
= (1 − p)n

which is positive for any p < 1.

The dependency between bad events is crucial to the probability we are interested in. The Lovász Local
Lemma introduces the notion of dependency graphs which characterizes the property.

4

Definition 3. A dependency graph for a set of events B1, ...,Bn is a graphG = (V ,E) such thatV = {1, ...,n}
and for i = 1, ...,n, event Bi is mutually independent of the events {Bj |(i, j) " E}

Theorem 4 (Lovász Local Lemma: symmetric version). Let B1, ...,Bn be a set of events, and assume that the
following hold:

1. ∀i, Pr [i] ≤ p;

2. the degree of the dependency graph given by B1, ...,Bn is bounded by d ;

3. 4pd ≤ 1.

Then Pr
0
n1
i=1

Bi

2
> 0.

We will prove a more general version in the next lecture.

3.1 Application

Definition 5. A k-CNF formula ϕ is of the form ϕ = C1 ∧C2 ∧ ...∧Cm , whereCi = xi1 ∨ ...∨xik and xi j is a
variable appeared either positively or negatively. The k-SAT problem is to determine whether a given k-CNF
formula ϕ is satisfiable.

Definition 6. The degree of a variable x is the number of clauses that x or ¬x belongs to.

Theorem 7. Let d be the maximum degree of variables in a k-CNF ϕ. if 4k(d − 1) ≤ 2k , then ϕ is satisfiable.

Proof. Let V be the set of variables of ϕ. Assume ϕ has n variables andm clauses. The probability space
is the uniform distribution over {true, false}V , or equivalently a uniform assignment of V . Each clause

Ci defines a bad event Bi ≜ “Ci is not satisfied”. So ϕ is satisfiable iff Pr
0
m1
i=1

Bi

2
> 0. We know that each

clause Ci satisfies Pr
,
Bi
-
= 2−k . Note that two clauses are dependent only if they share some variables.

For a clause Ci , it has at most k variables and each variable shows in at most d − 1 other clauses. So the
maximum degree of the dependency graph is at most k(d −1). Then the theorem follows from the LLL. □

References

5

