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Review

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

Integer Program

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

Vector Program

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

wT
uwu = 1, ∀u ∈ V
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max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

wT
uwu = 1, ∀u ∈ V

is equivalent to a positive semi-definite programming (solvable in
polynomial-time)

Let {ŵv}v∈V be an optimal solution.

Task: Round {ŵv}v∈V to a cut

Advanced Algorithms (IV) 3/11



max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

wT
uwu = 1, ∀u ∈ V

is equivalent to a positive semi-definite programming (solvable in
polynomial-time)
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Goemans–Williamson Rounding

1. Pick a random hyperplane crossing the origin;

2. The plane separates V into two sets.

Implementation
1. Choose a vector r = (r1, . . . , rn) where each ri ∼ N(0, 1) i.i.d.

2. Let S ≜
{
u ∈ V : rTŵu ≥ 0

}
.
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Analysis

Proposition
r
∥r∥ is a point on Sn−1 uniformly at random.

Proposition

An edge {u, v} ∈ E is separated with probability 1
π arccos(ŵu

Tŵv).

Proposition
Random hyperplane rounding is a 0.878-approximation of MaxCut.
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Quadratic Program

We try to apply Goemans–Williamson rounding to general
quadratic programs.

Quadratic Program

max
∑

1≤i, j≤n
ai, jxixj

s.t. xi ∈ {−1,+1} , i = 1, . . . , n.

We assume A =
(
ai, j

)
1≤i, j≤n is positive semi-definite.
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Rounding

We simply follow G-W…

Vector Program

max
∑

1≤i, j≤n
ai, jvTi vj

s.t. vi ∈ Rn, i = 1, . . . , n.

1. Compute {v̂i}1≤i≤n.
2. Pick a vector r u.a.r on Sn−1.

3. x̂i = 1 if v̂iTr ≥ 0; x̂i = −1 otherwise.
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Analysis

Proposition

E
[
x̂ix̂j

]
=

2

π
arcsin(v̂Ti · v̂j).

Proposition
Random hypergraph rounding is a 2

π -approximation of QP.

Proof.
Use Schur producet theorem. □
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Correlation Clustering

▶ Given a undirected graph G = (V, E) in which each e ∈ E has
two weights w+

e ,w−
e ≥ 0.

▶ Find a partition S = (S1, . . . , Sk) of V.
▶ E+(S) ≜ edge in a cluster; E−(S) ≜ edges between clusters.
▶ The goal is to maximize∑

e∈E+(S)
w+
e +

∑
e∈E−(S)

w−
e .
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Vector Program

For 1 ≤ k ≤ n, let ek be the k-th unit vector.

max
∑

{u,v}∈E

(
w+
u,v(x

T
uxv) + w−

u,v(1 − xTuxv)
)

s.t. xu ∈ {e1, . . . , en} , ∀u ∈ V.

Relaxation

max
∑

{u,v}∈E

(
w+
u,v(x

T
uxv) + w−

u,v(1 − xTuxv)
)

s.t. xTv xv = 1, ∀v ∈ V,

xTuxv ≥ 0, ∀u, v ∈ V,

xu ∈ Rn, ∀u ∈ V.
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Rounding

Follow G-W and choose two hyperplanes..

We always obtain at most four clusters.

Proposition
Two random hyperplane rounding is a 3

4 -approximation for
correlation clustering.
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