Advanced Algorithms (IV)

Chihao Zhang

Shanghai Jiao Tong University

Mar. 18, 2019

MAXCUT Input: An undirected graph G = (V, E).

Problem: A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

MAXCUT *Input:* An undirected graph G = (V, E). *Problem:* A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

Integer Program

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\}\in E} (1 - x_u x_v)$$

s.t. $x_u \in \{-1, 1\}, \quad \forall u \in V$

MAXCUT *Input:* An undirected graph G = (V, E). *Problem:* A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

Integer Program $\max \quad \frac{1}{2} \sum_{e=\{u,v\} \in E} (1 - x_u x_v)$ s.t. $x_u \in \{-1, 1\}, \quad \forall u \in V$

Vector Program

$$\max \quad \frac{1}{2} \sum_{e = \{u, v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\mathbf{w}_u^T \mathbf{w}_u = 1, \quad \forall u \in V$$

$$\max \quad \frac{1}{2} \sum_{e = \{u, v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\mathbf{w}_u^T \mathbf{w}_u = 1, \quad \forall u \in V$$

is equivalent to a positive semi-definite programming (solvable in polynomial-time)

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\mathbf{w}_u^T \mathbf{w}_u = 1, \quad \forall u \in V$$

is equivalent to a positive semi-definite programming (solvable in polynomial-time)

Let $\{\widehat{\mathbf{w}}_{v}\}_{v \in V}$ be an optimal solution.

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\mathbf{w}_u^T \mathbf{w}_u = 1, \quad \forall u \in V$$

is equivalent to a positive semi-definite programming (solvable in polynomial-time)

Let $\{\widehat{\mathbf{w}}_{v}\}_{v \in V}$ be an optimal solution.

Task: Round $\{\widehat{\mathbf{w}_{v}}\}_{v \in V}$ to a cut

GOEMANS-WILLIAMSON ROUNDING

GOEMANS-WILLIAMSON ROUNDING

1. Pick a random hyperplane crossing the origin;

2. The plane separates *V* into two sets.

GOEMANS-WILLIAMSON ROUNDING

1. Pick a random hyperplane crossing the origin;

2. The plane separates *V* into two sets.

Implementation

- 1. Choose a vector $\mathbf{r} = (r_1, \dots, r_n)$ where each $r_i \sim \mathcal{N}(0, 1)$ i.i.d.
- **2.** Let $S \triangleq \{ u \in V : \mathbf{r}^T \widehat{\mathbf{w}_u} \ge 0 \}.$

Proposition

 $\frac{\mathbf{r}}{\|r\|}$ is a point on S^{n-1} uniformly at random.

Proposition

 $\frac{\mathbf{r}}{\|r\|}$ is a point on S^{n-1} uniformly at random.

Proposition

An edge $\{u, v\} \in E$ is separated with probability $\frac{1}{\pi} \arccos(\widehat{\mathbf{w}_u}^T \widehat{\mathbf{w}_v})$.

Proposition

 $\frac{\mathbf{r}}{\|r\|}$ is a point on S^{n-1} uniformly at random.

Proposition

An edge $\{u, v\} \in E$ is separated with probability $\frac{1}{\pi} \arccos(\widehat{\mathbf{w}_u}^T \widehat{\mathbf{w}_v})$.

Proposition

Random hyperplane rounding is a 0.878-approximation of MAXCUT.

We try to apply Goemans-Williamson rounding to general quadratic programs.

We try to apply Goemans-Williamson rounding to general quadratic programs.

Quadratic Program $\max \sum_{1 \le i,j \le n} a_{i,j} x_i x_j$ s.t. $x_i \in \{-1, +1\}, \quad i = 1, ..., n.$

We try to apply Goemans-Williamson rounding to general quadratic programs.

Quadratic Program $\max \sum_{1 \le i,j \le n} a_{i,j} x_i x_j$ s.t. $x_i \in \{-1,+1\}, \quad i = 1, ..., n.$

We assume $A = (a_{i,j})_{1 \le i,j \le n}$ is positive semi-definite.

We simply follow G-W...

We simply follow G-W...

Vector Program

max
$$\sum_{1 \le i,j \le n} a_{i,j} \mathbf{v}_i^T \mathbf{v}_j$$

s.t. $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, ..., n$

We simply follow G-W...

Vector Program

$$\max \sum_{1 \le i,j \le n} a_{i,j} \mathbf{v}_i^T \mathbf{v}_j$$

s.t. $\mathbf{v}_i \in \mathbb{R}^n, \quad i = 1, \dots, n$

- **1.** Compute $\{\widehat{\mathbf{v}}_i\}_{1 \le i \le n}$.
- **2.** Pick a vector \mathbf{r} u.a.r on S^{n-1} .
- **3.** $\hat{\mathbf{x}}_i = 1$ if $\widehat{\mathbf{v}}_i^T \mathbf{r} \ge 0$; $\hat{\mathbf{x}}_i = -1$ otherwise.

Proposition

$$\mathbf{E}\left[\hat{x}_{i}\hat{x}_{j}\right] = \frac{2}{\pi} \arcsin(\hat{v}_{i}^{T} \cdot \hat{v}_{j}).$$

Proposition

$$\mathbf{E}\left[\hat{\mathbf{x}}_{i}\hat{\mathbf{x}}_{j}\right] = \frac{2}{\pi} \arcsin(\hat{\mathbf{v}}_{i}^{\mathsf{T}} \cdot \hat{\mathbf{v}}_{j}).$$

Proposition

Random hypergraph rounding is a $\frac{2}{\pi}$ -approximation of QP.

Proposition

$$\mathbf{E}\left[\hat{\mathbf{x}}_{i}\hat{\mathbf{x}}_{j}\right] = \frac{2}{\pi} \arcsin(\hat{\mathbf{v}}_{i}^{\mathsf{T}} \cdot \hat{\mathbf{v}}_{j}).$$

Proposition

Random hypergraph rounding is a $\frac{2}{\pi}$ -approximation of QP.

Proof.

Use Schur producet theorem.

► Given a undirected graph G = (V, E) in which each $e \in E$ has two weights $w_e^+, w_e^- \ge 0$.

- ► Given a undirected graph G = (V, E) in which each $e \in E$ has two weights $w_e^+, w_e^- \ge 0$.
- Find a partition $S = (S_1, \ldots, S_k)$ of *V*.

- ► Given a undirected graph G = (V, E) in which each $e \in E$ has two weights w_e^+ , $w_e^- \ge 0$.
- Find a partition $S = (S_1, \ldots, S_k)$ of *V*.
- ► $E^+(S) \triangleq$ edge in a cluster; $E^-(S) \triangleq$ edges between clusters.

- Given a undirected graph G = (V, E) in which each e ∈ E has two weights w⁺_e, w⁻_e ≥ 0.
- Find a partition $S = (S_1, \ldots, S_k)$ of *V*.
- ► $E^+(S) \triangleq$ edge in a cluster; $E^-(S) \triangleq$ edges between clusters.
- The goal is to maximize

$$\sum_{e\in E^+(\mathcal{S})} w_e^+ + \sum_{e\in E^-(\mathcal{S})} w_e^-.$$

For $1 \le k \le n$, let e_k be the *k*-th unit vector.

For $1 \le k \le n$, let e_k be the *k*-th unit vector.

$$\begin{aligned} \max \quad & \sum_{\{u,v\}\in E} \left(w_{u,v}^+(x_u^T x_v) + w_{u,v}^-(1-x_u^T x_v) \right) \\ \text{s.t.} \quad & x_u \in \{e_1,\ldots,e_n\}, \quad \forall u \in V. \end{aligned}$$

For $1 \le k \le n$, let e_k be the *k*-th unit vector.

$$\max \quad \sum_{\{u,v\}\in E} \left(w_{u,v}^+(x_u^T x_v) + w_{u,v}^-(1 - x_u^T x_v) \right)$$

s.t. $x_u \in \{e_1, \dots, e_n\}, \quad \forall u \in V.$

Relaxation

m

S

ax
$$\sum_{\{u,v\}\in E} \left(w_{u,v}^+(x_u^T x_v) + w_{u,v}^-(1 - x_u^T x_v) \right)$$

i.t.
$$x_v^T x_v = 1, \quad \forall v \in V,$$

$$x_u^T x_v \ge 0, \quad \forall u, v \in V,$$

$$x_u \in \mathbb{R}^n, \quad \forall u \in V.$$

Follow G-W and choose two hyperplanes..

Follow G-W and choose two hyperplanes..

We always obtain at most four clusters.

Follow G-W and choose two hyperplanes..

We always obtain at most four clusters.

Proposition

Two random hyperplane rounding is a $\frac{3}{4}$ -approximation for correlation clustering.