Advanced Algorithms (III)

Chihao Zhang

Shanghai Jiao Tong University

Mar. 11, 2019

MaxCut

Input: An undirected graph G = (V, E). *Problem:* A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

MaxCut

Input: An undirected graph G = (V, E). *Problem:* A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

NP-hard

MaxCut

Input: An undirected graph G = (V, E). *Problem:* A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an $\frac{1}{2}$ -approximation. (Exercise)

MaxCut

Input: An undirected graph
$$G = (V, E)$$
.
Problem: A set $S \subseteq V$ that maximizes $|E(S, \overline{S})|$.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an $\frac{1}{2}$ -approximation. (Exercise)

Can we find clever coins via LP relaxation ...?

▶ introduce a variable $x_u \in \{0, 1\}$ for every $u \in V$.

- ▶ introduce a variable $x_u \in \{0, 1\}$ for every $u \in V$.
- ▶ introduce a variable $y_{u,v} \in \{0,1\}$ for every edge $e = \{u, v\}$.

- ▶ introduce a vairable $x_u \in \{0, 1\}$ for every $u \in V$.
- ▶ introduce a variable $y_{u,v} \in \{0,1\}$ for every edge $e = \{u, v\}$.

The cost function is $\sum_{e=\{u,v\}\in E} y_{u,v}$.

- ▶ introduce a vairable $x_u \in \{0, 1\}$ for every $u \in V$.
- ▶ introduce a variable $y_{u,v} \in \{0,1\}$ for every edge $e = \{u, v\}$.

The cost function is $\sum_{e=\{u,v\}\in E} y_{u,v}$.

How to write linear constraints for a cut?

- ▶ introduce a vairable $x_u \in \{0, 1\}$ for every $u \in V$.
- ▶ introduce a variable $y_{u,v} \in \{0,1\}$ for every edge $e = \{u, v\}$.

The cost function is $\sum_{e=\{u,v\}\in E} y_{u,v}$.

How to write linear constraints for a cut?

idea: Let $F = \{\{u, v\} \in E : y_{u,v} = 1\}$, we view (S, \overline{S}, F) as a bipartite subgraph of *G*.

▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.

- introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in {\binom{V}{2}}$.
- introduce constaints for being bipartite graph metric.

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in {\binom{V}{2}}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

 $\max \quad \sum_{\{u,v\}\in E} y_{u,v}$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

$$\begin{aligned} \max \quad & \sum_{\{u,v\} \in E} y_{u,v} \\ \text{s.t.} \quad & y_{u,v} \le y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V \end{aligned}$$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

$$\max \sum_{\{u,v\}\in E} y_{u,v}$$

s.t. $y_{u,v} \leq y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V$
$$\sum_{e=\{u,v\}\in C} y_{u,v} \leq |C| - 1, \quad \forall \text{odd cycle } C$$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

max

$$\sum_{\{u,v\}\in E} y_{u,v}$$

s.t.
$$y_{u,v} \le y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V$$

 $y_{u,v} + y_{u,w} + y_{w,v} \le 2, \quad \forall u, v, w, \in V$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

$$\max \sum_{\{u,v\}\in E} y_{u,v}$$

s.t. $y_{u,v} \leq y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V$
 $y_{u,v} + y_{u,w} + y_{w,v} \leq 2, \quad \forall u, v, w, \in V$
 $y_{u,v} = y_{v,u}, \quad \forall u, v \in V$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

$$\max \sum_{\{u,v\}\in E} y_{u,v}$$

s.t. $y_{u,v} \leq y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V$
 $y_{u,v} + y_{u,w} + y_{w,v} \leq 2, \quad \forall u, v, w, \in V$
 $y_{u,v} = y_{v,u}, \quad \forall u, v \in V$
 $y_{u,v} \in \{0,1\}, \quad \forall u, v \in V$

- ▶ introduce $y_{u,v}$ and $y_{v,u}$ for every $\{u, v\} \in \binom{V}{2}$.
- introduce constaints for being bipartite graph metric.
- introduce constraints to rule out odd cycles.

$$\max \sum_{\{u,v\}\in E} y_{u,v}$$

s.t. $y_{u,v} \leq y_{u,w} + y_{w,v}, \quad \forall u, v, w \in V$
 $y_{u,v} + y_{u,w} + y_{w,v} \leq 2, \quad \forall u, v, w, \in V$
 $y_{u,v} = y_{v,u}, \quad \forall u, v \in V$
 $y_{u,v} \in [0, 1], \quad \forall u, v \in V$

INTERALITY GAP

INTERALITY GAP

Theorem

For every $\varepsilon > 0$, there exists a graph *G* such that

$$\frac{LP(G)}{\mathsf{MaxCut}(G)} \ge 2 - \varepsilon$$

Theorem

For every $\varepsilon > 0$, there exists a graph *G* such that

$$\frac{LP(G)}{\mathsf{MaxCut}(G)} \geq 2 - \varepsilon$$

Random graph $\mathcal{G}(n, p)$ for proper p...

$$\max 2x - 3y$$

s.t. $x + y \le 2$
 $3x - y \le 1$
 $x \ge 0$
 $y \ge 0$

 $\max 2x - 3y$ s.t. $x + y \le 2$ $3x - y \le 1$ $x \ge 0$ $y \ge 0$

$$\max \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & -y \end{bmatrix}$$

s.t.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \le 2$$
$$\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \le 1$$
$$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \ge 0$$

 $\max 2x - 3y$ s.t. $x + y \le 2$ $3x - y \le 1$ $x \ge 0$ $y \ge 0$

$$\max \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & -y \end{bmatrix}$$

s.t.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \le 2$$
$$\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \bullet \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \le 1$$
$$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \ge 0$$

Hadamard Product

$$A \bullet B \triangleq \sum_{1 \leq i,j \leq n} a_{ij} \cdot b_{ij}.$$

POSITIVE SEMI-DEFINITE MATRIX

Definition

An $n \times n$ symmetric matrix A is positive semi-definite if $x^T A x \ge 0$ for every vector x. We write it as

 $A \geq 0$.

POSITIVE SEMI-DEFINITE MATRIX

Definition

An $n \times n$ symmetric matrix A is positive semi-definite if $x^T A x \ge 0$ for every vector x. We write it as

 $A \geq 0$.

Linear Programming

$$\begin{aligned} \max \quad c^T x \\ \text{s.t.} \quad a_i^T x \leq b_i, \quad \forall i \in [m] \\ x_j \geq 0, \quad \forall j \in [n] \end{aligned}$$

POSITIVE SEMI-DEFINITE MATRIX

Definition An $n \times n$ symmetric matrix A is positive semi-definite if $x^T A x \ge 0$ for every vector x. We write it as $A \geq 0$. **Linear Programming PSD** Programming max $c^T x$ max $C \bullet X$ s.t. $a_i^T x \leq b_i$, $\forall i \in [m]$ s.t. $A_i \bullet X \leq b_i, \quad \forall i \in [m]$ $x_i \ge 0, \quad \forall j \in [n]$ X > 0

PROPERTY OF PSD MATRIX

PROPERTY OF PSD MATRIX

Theorem

For an $n \times n$ symmetric matrix, the followings are equivalent

- **1.** *A* ≥ 0;
- 2. A has *n* non-negative eigenvalues;
- **3.** $A = V^T V$ for some $n \times n$ matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$.

PROPERTY OF PSD MATRIX

Theorem

For an $n \times n$ symmetric matrix, the followings are equivalent

- **1.** *A* ≥ 0;
- 2. A has *n* non-negative eigenvalues;
- **3.** $A = V^T V$ for some $n \times n$ matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$.

We now prove the theorem using spectral theorem for symmetric matrices.

VECTOR PROGRAMMING

VECTOR PROGRAMMING

If we write $X = V^T V$ for some $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$, then

PSD Programming

$$\max \quad C \bullet X$$

s.t. $A_k \bullet X \le b_k, \quad \forall k \in [m]$
 $X \ge 0$

Vector Programming

$$\max \sum_{1 \le i,j \le n} c(i,j) \cdot \mathbf{v}_i^T \mathbf{v}_j$$

s.t.
$$\sum_{1 \le i,j \le n} a_k(i,j) \cdot \mathbf{v}_i^T \mathbf{v}_j \le b_k, \quad \forall k \in [m]$$

$$\mathbf{v}_i \in \mathbb{R}^n, \quad \forall i \in [n]$$

Васк то МахСит

BACK TO MAXCUT

It is easy to model MAXCUT as the following quadratic programming.

BACK TO MAXCUT

It is easy to model MAXCUT as the following quadratic programming.

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\}\in E} (1 - x_u x_v)$$

s.t. $x_u \in \{-1, 1\}, \quad \forall u \in V$

Васк то МахСит

It is easy to model MAXCUT as the following quadratic programming.

$$\max \quad \frac{1}{2} \sum_{e = \{u, v\} \in E} (1 - x_u x_v)$$

s.t.
$$x_u \in \{-1, 1\}, \quad \forall u \in V$$

We relax it to a vector programming, which is equivalent to an SDP.

BACK TO MAXCUT

It is easy to model MAXCUT as the following quadratic programming.

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\}\in E} (1 - x_u x_v)$$

s.t. $x_u \in \{-1, 1\}, \quad \forall u \in V$

We relax it to a vector programming, which is equivalent to an SDP.

$$\max \quad \frac{1}{2} \sum_{e = \{u, v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\|\mathbf{w}_u\|_2 = 1, \quad \forall u \in V$$

BACK TO MAXCUT

It is easy to model MAXCUT as the following quadratic programming.

$$\max \quad \frac{1}{2} \sum_{e=\{u,v\}\in E} (1 - x_u x_v)$$

s.t. $x_u \in \{-1, 1\}, \quad \forall u \in V$

We relax it to a vector programming, which is equivalent to an SDP.

$$\max \quad \frac{1}{2} \sum_{e = \{u, v\} \in E} \left(1 - \mathbf{w}_u^T \mathbf{w}_v \right)$$

s.t.
$$\mathbf{w}_u \in \mathbb{R}^n, \quad \forall u \in V$$
$$\|\mathbf{w}_u\|_2 = 1, \quad \forall u \in V$$

Rounding

Let $\{\mathbf{w}_u\}$ be an optimal solution of the SDP.

Let $\{\mathbf{w}_u\}$ be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes...

Let $\{\mathbf{w}_u\}$ be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes...

Next week: How to implement the rounding? How to analyze the performance?