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MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?
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LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.
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▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V
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Interality Gap

Theorem
For every ε > 0, there exists a graph G such that

LP(G)
MaxCut(G)

≥ 2 − ε

Random graph G(n, p) for proper p…
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LP in Matrix Form

max 2x − 3y

s.t. x+ y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

max
[
2 0
0 −3

]
•
[
x 0
0 −y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

Hadamard Product

A • B ≜
∑

1≤i, j≤n
aij · bij.
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Positive Semi-definite Matrix

Definition
An n × n symmetric matrix A is positive semi-definite if xTAx ≥ 0 for
every vector x. We write it as

A ⪰ 0.

Linear Programming

max cTx

s.t. aTi x ≤ bi, ∀i ∈ [m]

xj ≥ 0, ∀j ∈ [n]

PSD Programming

max C • X
s.t. Ai • X ≤ bi, ∀i ∈ [m]

X ⪰ 0
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Property of PSD Matrix

Theorem
For an n × n symmetric matrix, the followings are equivalent

1. A ⪰ 0;

2. A has n non-negative eigenvalues;

3. A = VTV for some n × n matrix V =
[
v1 v2 . . . vn

]
.

We now prove the theorem using spectral theorem for symmetric
matrices.
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Vector Programming

If we write X = VTV for some V =
[
v1 v2 . . . vn

]
, then

PSD Programming

max C • X
s.t. Ak • X ≤ bk, ∀k ∈ [m]

X ⪰ 0

Vector Programming

max
∑

1≤i, j≤n
c(i, j) · vTi vj

s.t.
∑

1≤i, j≤n
ak(i, j) · vTi vj ≤ bk, ∀k ∈ [m]

vi ∈ Rn, ∀i ∈ [n]
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Back to MaxCut

It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V
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Rounding

Let {wu} be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes…

Next week: How to implement the rounding? How to analyze the
performance?
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