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MaxCuTt

MaxCut
Input:  An undirected graph G = (V, E).
Problem: A set S C Vthat maximizes |E(S, S)|.
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MaxCut
Input:  An undirected graph G = (V, E).
Problem: A set S C Vthat maximizes |E(S, S)|.

NP-hard
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MaxCuTt

MaxCut

NP-hard

Similar to MAX2SAT, tossing a fair coin yields an %—approximation.
(Exercise)
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MaxCuTt

MaxCut

NP-hard

Similar to MAX2SAT, tossing a fair coin yields an %—approximation.

(Exercise)

Can we find clever coins via LP relaxation...?
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LP ror MaxCuTt
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LP ror MaxCuTt

> introduce a vairable x, € {0, 1} for every u e V.
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> introduce a vairable x, € {0, 1} for every u e V.

> introduce a variable y,, € {0, 1} for every edge e = {u, v}.
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LP ror MaxCuTt

> introduce a vairable x, € {0, 1} for every u e V.

> introduce a variable y,, € {0, 1} for every edge e = {u, v}.

The cost function is X, vyer Yu,v-
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LP ror MaxCuTt

> introduce a vairable x, € {0, 1} for every u e V.

> introduce a variable y,, € {0, 1} for every edge e = {u, v}.
The cost function is X e (4 v} £ Yuv-

How to write linear constraints for a cut?
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LP ror MaxCuTt

> introduce a vairable x, € {0, 1} for every u e V.

> introduce a variable y,, € {0, 1} for every edge e = {u, v}.
The cost function is X e (4 v} £ Yuv-
How to write linear constraints for a cut?

idea: Let F= {{u,v} € E : y,, = 1}, we view (S, S, F) as a bipartite
subgraph of G.
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> introduce y, , and y,, for every {u, v} € (;/)
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> introduce y,,, and y,, for every {u, v} € (3).

» introduce constaints for being bipartite graph metric.
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> introduce y,,, and y,, for every {u, v} € (3).
» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.
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{u,v}eE



> introduce y,,, and y,, for every {u, v} € (3).

» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max Y

{u,v}eE

st Vuv < Vuw+ Yuw Yuv,weV
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> introduce y,,, and y,, for every {u, v} € (3).
> introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max Z Vuv
{u,v}eE

st Vuv < Vuw+ Yuyw Yuv,weV

Z Yuv < |Cl =1, Vodd cycle C
e={u,v}eC
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> introduce y,,, and y,, for every {u, v} € (3).
» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max Y

{u,v}eE
st Vuv < Vuw+ Yuw Yuv,weV
Yuvt Yuw+ Ywy =2, Yuv,w,eV
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> introduce y,,, and y,, for every {u, v} € (3).
» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max Y

(v} eE

st Vuv < Vuw+ Yuw Yuv,weV
Yuv+ Yow+ Ywv <2, Yuv,w,eV
Yuv=Yyu YU VEYV
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> introduce y,,, and y,, for every {u, v} € (3).

» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max

s.t.

Z Yuv

{u,v}eE

Yuv < Vuw+ Yy Yuv,weV
Yuv+ Yow+ Ywv <2, Yuv,w,eV
Yuv=Yyu YU VEYV

Yuv€1{0,1}, VuveV
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> introduce y,,, and y,, for every {u, v} € (3).

» introduce constaints for being bipartite graph metric.

> introduce constraints to rule out odd cycles.

max

s.t.

Z Yuv

{uvyeE

Yuv < Yow+ Ywyw YU v,weV
Yuv+ Yow+ Ywv <2, Yuv,w,eV
Yuv=Yyu YU VEYV
Yuv€[0,1], VuveV
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INTERALITY GAP

Theorem
For every € > 0, there exists a graph G such that

LP(G)

————2>2-¢
MaxCuT(G)

Advanced Algorithms (Ill)



INTERALITY GAP

Theorem
For every € > 0, there exists a graph G such that

LP(G)

————2>2-¢
MaxCuT(G)

Random graph G(n, p) for proper p...
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LP 1N MATRIX FORM
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LP 1N MATRIX FORM

max 2x-3y

st. x+y<2
3x—-y<1
x>0
y=0
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LP 1N MATRIX FORM

max 2x-3y

s.t.

Xx+y<2
3x—-y<1
x>0
y=0

max

s.t.

ox ow or o
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LP 1N MATRIX FORM

max
max 2x-3y
st. x+y<2 s.t.
3x—y<1
x=0
y=>0

= ><'rO e = 'e g

Hadamard Product

AeBZ Z a,‘j'b,'j.

1<i,j<n
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PoOSITIVE SEMI-DEFINITE MATRIX

Definition
An nx n symmetric matrix A is positive semi-definite if x’ Ax > 0 for
every vector x. We write it as

A>0.
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PoOSITIVE SEMI-DEFINITE MATRIX

Definition
An nx n symmetric matrix A is positive semi-definite if x’ Ax > 0 for
every vector x. We write it as

A>0.

Linear Programming

st. alx<b;, Vie[m

Xj 2 0, Vje [n]
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PoOSITIVE SEMI-DEFINITE MATRIX

Definition
An nx n symmetric matrix A is positive semi-definite if x’ Ax > 0 for
every vector x. We write it as

A= 0.
Linear Programming PSD Programming
max c¢'x max Ce X
st. ax<b;, Vie[m st. A;jeX<b, Vie[m]

x>0, Vjeln] X>0
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PrROPERTY OF PSD MATRIX
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PROPERTY OF PSD MATRIX

Theorem

For an n X n symmetric matrix, the followings are equivalent
1. A>0;
2. Ahas nnon-negative eigenvalues;

3. A= V'V for some n X nmatrix V = [v1 vy ... V,,].
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PROPERTY OF PSD MATRIX

Theorem

For an n X n symmetric matrix, the followings are equivalent
1. A>0;
2. Ahas nnon-negative eigenvalues;

3. A= V'V for some n X nmatrix V = [v1 vy ... V,-,].

We now prove the theorem using spectral theorem for symmetric
matrices.
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VECTOR PROGRAMMING
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VECTOR PROGRAMMING
If we write X = V'V for some V = [V1 D)

PSD Programming

max Ce X
st. Are X< by, Vke[m|
X>=0

Vector Programming

max Z c(ij) - v]v;

1<ij<n

v,,], then

s.t. Z ar(i,j) - v]v; < by, Vke [m]

1<ij<n

v;ieR", Vie[n]
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Back To MaxCuTt
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BAack To MaxCuTt

It is easy to model MAXCuT as the following quadratic
programming.
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BAack To MaxCuTt

It is easy to model MAXCuT as the following quadratic
programming,.

1
max — Z (1= xuxy)
e={u,v}eE
st. x,€{-1,1}, VYueV
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BAack To MaxCuTt

It is easy to model MAXCuT as the following quadratic
programming,.

1
max — Z (1= xuxy)
e={u,v}eE
st. x,€{-1,1}, VYueV

We relax it to a vector programming, which is equivalent to an SDP.
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programming,.

1
max — Z (1= xuxy)
e={u,v}eE
st. x,€{-1,1}, VYueV

We relax it to a vector programming, which is equivalent to an SDP.

1
max — Z (1 = waV)
e={u,v}eE
st. w,eR", VYueV
I|WU||2 — ]-a Vu € V

Advanced Algorithms (1) 1011



BAack To MaxCuTt

It is easy to model MAXCuT as the following quadratic
programming,.

1
max — Z (1= xuxy)
e={u,v}eE
st. x,€{-1,1}, VYueV

We relax it to a vector programming, which is equivalent to an SDP.

1
max — Z (1 = waV)
e={u,v}eE
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RounDING

Let {w,} be an optimal solution of the SDP.
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RounDING

Let {w,} be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes...
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RounDING

Let {w,} be an optimal solution of the SDP.
Choose a random hyperplane to divide the vectors into two classes...

Next week: How to implement the rounding? How to analyze the
performance?
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