
Advanced Algorithms (III)

Chihao Zhang

Shanghai Jiao Tong University

Mar. 11, 2019

Advanced Algorithms (III) 1/11

MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?

Advanced Algorithms (III) 2/11

MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?

Advanced Algorithms (III) 2/11

MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?

Advanced Algorithms (III) 2/11

MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?

Advanced Algorithms (III) 2/11

MaxCut

MaxCut
Input: An undirected graph G = (V, E).

Problem: A set S ⊆ V that maximizes
��E(S, S̄)��.

NP-hard

Similar to Max2SAT, tossing a fair coin yields an 1
2 -approximation.

(Exercise)

Can we find clever coins via LP relaxation…?

Advanced Algorithms (III) 2/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.

▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.
The cost function is

∑
e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

LP for MaxCut

▶ introduce a vairable xu ∈ {0, 1} for every u ∈ V.
▶ introduce a variable yu,v ∈ {0, 1} for every edge e = {u, v}.

The cost function is
∑

e={u,v}∈E yu,v.

How to write linear constraints for a cut?

idea: Let F =
{
{u, v} ∈ E : yu,v = 1

}
, we view (S, S̄, F) as a bipartite

subgraph of G.

Advanced Algorithms (III) 3/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.

▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V∑
e={u,v}∈C

yu,v ≤ |C| − 1, ∀odd cycle C

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

yu,v ∈ {0, 1} , ∀u, v ∈ V

Advanced Algorithms (III) 4/11

▶ introduce yu,v and yv,u for every {u, v} ∈
(V
2

)
.

▶ introduce constaints for being bipartite graph metric.
▶ introduce constraints to rule out odd cycles.

max
∑

{u,v}∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v, ∀u, v,w ∈ V

yu,v + yu,w + yw,v ≤ 2, ∀u, v,w, ∈ V

yu,v = yv,u, ∀u, v ∈ V

yu,v ∈ [0, 1], ∀u, v ∈ V

Advanced Algorithms (III) 4/11

Interality Gap

Theorem
For every ε > 0, there exists a graph G such that

LP(G)
MaxCut(G)

≥ 2 − ε

Random graph G(n, p) for proper p…

Advanced Algorithms (III) 5/11

Interality Gap

Theorem
For every ε > 0, there exists a graph G such that

LP(G)
MaxCut(G)

≥ 2 − ε

Random graph G(n, p) for proper p…

Advanced Algorithms (III) 5/11

Interality Gap

Theorem
For every ε > 0, there exists a graph G such that

LP(G)
MaxCut(G)

≥ 2 − ε

Random graph G(n, p) for proper p…

Advanced Algorithms (III) 5/11

LP in Matrix Form

max 2x − 3y

s.t. x+ y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

max
[
2 0
0 −3

]
•
[
x 0
0 −y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

Hadamard Product

A • B ≜
∑

1≤i, j≤n
aij · bij.

Advanced Algorithms (III) 6/11

LP in Matrix Form

max 2x − 3y

s.t. x+ y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

max
[
2 0
0 −3

]
•
[
x 0
0 −y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

Hadamard Product

A • B ≜
∑

1≤i, j≤n
aij · bij.

Advanced Algorithms (III) 6/11

LP in Matrix Form

max 2x − 3y

s.t. x+ y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

max
[
2 0
0 −3

]
•
[
x 0
0 −y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

Hadamard Product

A • B ≜
∑

1≤i, j≤n
aij · bij.

Advanced Algorithms (III) 6/11

LP in Matrix Form

max 2x − 3y

s.t. x+ y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

max
[
2 0
0 −3

]
•
[
x 0
0 −y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

Hadamard Product

A • B ≜
∑

1≤i, j≤n
aij · bij.

Advanced Algorithms (III) 6/11

Positive Semi-definite Matrix

Definition
An n × n symmetric matrix A is positive semi-definite if xTAx ≥ 0 for
every vector x. We write it as

A ⪰ 0.

Linear Programming

max cTx

s.t. aTi x ≤ bi, ∀i ∈ [m]

xj ≥ 0, ∀j ∈ [n]

PSD Programming

max C • X
s.t. Ai • X ≤ bi, ∀i ∈ [m]

X ⪰ 0

Advanced Algorithms (III) 7/11

Positive Semi-definite Matrix

Definition
An n × n symmetric matrix A is positive semi-definite if xTAx ≥ 0 for
every vector x. We write it as

A ⪰ 0.

Linear Programming

max cTx

s.t. aTi x ≤ bi, ∀i ∈ [m]

xj ≥ 0, ∀j ∈ [n]

PSD Programming

max C • X
s.t. Ai • X ≤ bi, ∀i ∈ [m]

X ⪰ 0

Advanced Algorithms (III) 7/11

Positive Semi-definite Matrix

Definition
An n × n symmetric matrix A is positive semi-definite if xTAx ≥ 0 for
every vector x. We write it as

A ⪰ 0.

Linear Programming

max cTx

s.t. aTi x ≤ bi, ∀i ∈ [m]

xj ≥ 0, ∀j ∈ [n]

PSD Programming

max C • X
s.t. Ai • X ≤ bi, ∀i ∈ [m]

X ⪰ 0

Advanced Algorithms (III) 7/11

Property of PSD Matrix

Theorem
For an n × n symmetric matrix, the followings are equivalent

1. A ⪰ 0;

2. A has n non-negative eigenvalues;

3. A = VTV for some n × n matrix V =
[
v1 v2 . . . vn

]
.

We now prove the theorem using spectral theorem for symmetric
matrices.

Advanced Algorithms (III) 8/11

Property of PSD Matrix

Theorem
For an n × n symmetric matrix, the followings are equivalent

1. A ⪰ 0;

2. A has n non-negative eigenvalues;

3. A = VTV for some n × n matrix V =
[
v1 v2 . . . vn

]
.

We now prove the theorem using spectral theorem for symmetric
matrices.

Advanced Algorithms (III) 8/11

Property of PSD Matrix

Theorem
For an n × n symmetric matrix, the followings are equivalent

1. A ⪰ 0;

2. A has n non-negative eigenvalues;

3. A = VTV for some n × n matrix V =
[
v1 v2 . . . vn

]
.

We now prove the theorem using spectral theorem for symmetric
matrices.

Advanced Algorithms (III) 8/11

Vector Programming

If we write X = VTV for some V =
[
v1 v2 . . . vn

]
, then

PSD Programming

max C • X
s.t. Ak • X ≤ bk, ∀k ∈ [m]

X ⪰ 0

Vector Programming

max
∑

1≤i, j≤n
c(i, j) · vTi vj

s.t.
∑

1≤i, j≤n
ak(i, j) · vTi vj ≤ bk, ∀k ∈ [m]

vi ∈ Rn, ∀i ∈ [n]

Advanced Algorithms (III) 9/11

Vector Programming
If we write X = VTV for some V =

[
v1 v2 . . . vn

]
, then

PSD Programming

max C • X
s.t. Ak • X ≤ bk, ∀k ∈ [m]

X ⪰ 0

Vector Programming

max
∑

1≤i, j≤n
c(i, j) · vTi vj

s.t.
∑

1≤i, j≤n
ak(i, j) · vTi vj ≤ bk, ∀k ∈ [m]

vi ∈ Rn, ∀i ∈ [n]

Advanced Algorithms (III) 9/11

Back to MaxCut

It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Back to MaxCut
It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Back to MaxCut
It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Back to MaxCut
It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Back to MaxCut
It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Back to MaxCut
It is easy to model MaxCut as the following quadratic
programming.

max 1

2

∑
e={u,v}∈E

(1 − xuxv)

s.t. xu ∈ {−1, 1} , ∀u ∈ V

We relax it to a vector programming, which is equivalent to an SDP.

max 1

2

∑
e={u,v}∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn, ∀u ∈ V

∥wu∥2 = 1, ∀u ∈ V

Advanced Algorithms (III) 10/11

Rounding

Let {wu} be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes…

Next week: How to implement the rounding? How to analyze the
performance?

Advanced Algorithms (III) 11/11

Rounding

Let {wu} be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes…

Next week: How to implement the rounding? How to analyze the
performance?

Advanced Algorithms (III) 11/11

Rounding

Let {wu} be an optimal solution of the SDP.

Choose a random hyperplane to divide the vectors into two classes…

Next week: How to implement the rounding? How to analyze the
performance?

Advanced Algorithms (III) 11/11

