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MaxSAT

Recall that we can obtain a 3
4 -approximation by choosing the better

of the two.

We show that this ratio can also be achieved via direct rounding.

Recall that we have the following linear programming relaxation.

max
m∑
j=1

zj

subject to
∑
i∈Pj

yi +
∑
k∈Nj

(1 − yk) ≥ zj, ∀Cj =
∨
i∈Pj

xi ∨
∨
k∈Nj

x̄k

zj ∈ [0, 1], ∀j ∈ [m]

yi ∈ [0, 1], ∀i ∈ [n]
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Let
{
y∗i
}
i∈[n] ,

{
z∗j

}
j∈[m]

be an optimal solution of the LP.

Instead of tossing y∗i -biased coins, we toss f(y∗i )-biased coins for
some function f(·) ∈ [0, 1].

For Cj =
∨

i∈Pj xi ∨
∨

k∈Nj
x̄k,

Pr
[
Cj is not satisfied

]
=

∏
i∈Pj

(1 − f(y∗i ))
∏
k∈Nj

f(y∗k).

We can choose a suitable f to get 3
4 approximation.
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Integrality Gap

In most LP based approximation algorithms, the upper bound for
the OPT is

OPT ≤ OPT(LP).

Then we establish

OPT∗ ≥ α · OPT(LP) ≥ α · OPT.

If we alreadly know

OPT ≤ β · OPT(LP),

then we cannot have α > β !

The ratio β is called the integrality gap of the LP relaxation.
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Integrality Gap for MaxSAT

Consider the instance,

(x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2)

OPT = 3 and OPT(LP) = 4.

The integrality gap of our LP is 3
4 .

Corollary. We cannot beat 3
4 if we use OPT ≤ OPT(LP) upper

bound.
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Minimum Label Cut

Minimum Label s-t Cut
Input: A graph G = (V, E); a set of labels [L] =

{1, 2, . . . , L} such that each e ∈ E is labelled with
one ℓ(e) ∈ [L]; two vertices s, t ∈ V.

Problem: Compute aminimum set of labels L′ ⊆ [L] such that
the removal of all edges with label in L′ disconnects
s and t.

NP-hard, and even hard to approximate with any constant ratio
(unless NP = P).
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LP Relaxation

We introduce a variable zj for each label j ∈ [L]. Let Ps, t be the
collection of paths between s and t.

min
L∑

j=1

zj

subject to
∑
e∈P

zℓ(e) ≥ 1, ∀P ∈ Ps, t

zj ∈ [0, 1], ∀j ∈ [L]

Q1: How to solve this LP efficiently?

Q2: What is the integrality gap of this LP? Ω(m).
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Separation Oracle

We can solve the LP in poly-time using ellipsoid method provided a
separation oracle:

Given a point, in PTIME either
▶ confirm it is a feasible solution; or
▶ find a violated constraint.

Oracle here: shortest s-t path
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Beat the Interality Gap

▶ Obtain a partial solution via rounding;
▶ Complement the solution by combinatorial construction.

Let
{
z∗j

}
j∈[L]

be an optimal solution of the LP. Let β > 0

be a parameter.

1. Let L1 ≜
{
j ∈ L : z∗j ≥ β

}
.

2. Let G′ be the graph obtained from G by removing
edges with label in L1.

3. Let F be the minimum s-t cut of G′, L2 be the labels
of edges in F.

4. Return L1 ∪ L2.
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Bounding L1 and L2

It is clear that

|L1 | ≤
∑
j∈[L]

1

β
· z∗j =

1

β
· OPT(LP) ≤ 1

β
· OPT.

On the otherhand, there cannot be too many edge disjoint paths
between s and t in G′:
▶ at least 1

β edges on each s-t path;

▶ at most m−|L1 |
1/β = β(m − |L1 |) such paths;

▶ therefore |L2 | ≤ |F| ≤ β(m − |L1 |) (Menger’s theorem).
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The Choice of β

We already have

|L1 | + |L2 | ≤
1

β
· OPT+ β(m − |L1 |) ≤

1

β
· OPT+ βm.

Setting β =
√

OPT
m yields an O

(
m

1
2

)
approximation.

Remark
Instead of using Menger’s theorem, we can find a small cut by BFS
from s.

Exercise. Find an O
(
n

2
3

)
-approx algorithm via rounding + BFS.
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