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MaxSAT

Recall that we can obtain a %—approximation by choosing the better
of the two.
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Recall that we can obtain a %—approximation by choosing the better
of the two.

We show that this ratio can also be achieved via direct rounding.
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MaxSAT

Recall that we can obtain a %-approximation by choosing the better
of the two.

We show that this ratio can also be achieved via direct rounding.

Recall that we have the following linear programming relaxation.

m

max Z Zj
=1
subject to Z yi + Z(l -y >z, VC= \/ X V \/ Xk

i€pP; keN; i€pP; keN;
ze01], Vjelm
yi€10,1], Vie€[n|
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Let {yjf}ie[n] , {Zj} be an optimal solution of the LP.

j&[m]
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Let {yj.‘}ie[n] , {z}‘}je[m] be an optimal solution of the LP.

Instead of tossing y:-biased coins, we toss f{y:)-biased coins for
some function f{-) € [0, 1].
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Let {yj.‘}ie[n] , {z}‘}je[m] be an optimal solution of the LP.

Instead of tossing y:-biased coins, we toss f{y:)-biased coins for
some function f{-) € [0, 1].
For Cj = Viep Xi V Vken; Xk

Pr [ C; is not satisfied | = 1_[ (1-Ayh)) l_lf(y;;)

ieP; keN;
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Let {yj.‘}ie[n] , {z}‘}je[m] be an optimal solution of the LP.

Instead of tossing y:-biased coins, we toss f{y:)-biased coins for
some function f{-) € [0, 1].

For Cj = Viep Xi V Vken; Xk

Pr [ C; is not satisfied | = 1_[ (1-Ayh)) l_lf(y;;)

ieP; keN;

We can choose a suitable fto get % approximation.
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INTEGRALITY GAP

In most LP based approximation algorithms, the upper bound for
the OPT is
OPT < OPT(LP).
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INTEGRALITY GAP

In most LP based approximation algorithms, the upper bound for
the OPT is
OPT < OPT(LP).

Then we establish

OPT" > a - OPT(LP) > « - OPT.
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INTEGRALITY GAP

In most LP based approximation algorithms, the upper bound for
the OPT is
OPT < OPT(LP).

Then we establish
OPT" > a - OPT(LP) > « - OPT.
If we alreadly know

OPT < - OPT(LP),
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INTEGRALITY GAP

In most LP based approximation algorithms, the upper bound for
the OPT is
OPT < OPT(LP).

Then we establish
OPT" > a - OPT(LP) > « - OPT.
If we alreadly know
OPT < 8- OPT(LP),

then we cannot have a > f!
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INTEGRALITY GAP

In most LP based approximation algorithms, the upper bound for
the OPT is
OPT < OPT(LP).

Then we establish
OPT" > a - OPT(LP) > « - OPT.
If we alreadly know
OPT < - OPT(LP),
then we cannot have a > f!

The ratio f is called the integrality gap of the LP relaxation.

Advanced Algorithms (Il) am



INTEGRALITY GAP FOR MAXSAT
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INTEGRALITY GAP FOR MAXSAT

Consider the instance,

(Xl \Y X2) A (Xl \Y )_(2) A ()_(1 \Y X2) A ()_(1 \Y )_(2)
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INTEGRALITY GAP FOR MAXSAT

Consider the instance,
(Xl \Y XQ) A (Xl \Y )_(2) A ()_(1 \Y X2) A ()_(1 \Y )_(2)

OPT = 3 and OPT(LP) = 4.
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INTEGRALITY GAP FOR MAXSAT

Consider the instance,
(Xl \Y XQ) A (Xl \Y )_(2) A ()_(1 \Y X2) A ()_(1 \Y )_(2)
OPT = 3 and OPT(LP) = 4.

The integrality gap of our LP is %.
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INTEGRALITY GAP FOR MAXSAT

Consider the instance,

(x1 Vxo) A(x1 Vxo) A (X1 Vxo) A (X1 VXxg)
OPT = 3 and OPT(LP) = 4.
The integrality gap of our LP is %.

Corollary. We cannot beat 3 if we use OPT < OPT(LP) upper
bound.
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Minimum LABEL Cur

Input:

Problem:

MINIMUM LABEL s-t CuT

A graph G = (V,E); a set of labels [L] =
{1,2,..., L} such that each e € E is labelled with
one {(e) € [L]; two vertices s, t € V.

Compute aminimum set of labels L’ C [L] such that
the removal of all edges with label in L’ disconnects
sand t.
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Minimum LABEL Cur

MiINIMUM LABEL s-t CuT
Input: A graph G = (V,E); a set of labels [L] =
{1,2,..., L} such that each e € E is labelled with
one {(e) € [L]; two vertices s, t € V.
Problem: Compute a minimum set of labels L” C [L] such that
the removal of all edges with label in L’ disconnects
sand t.

NP-hard, and even hard to approximate with any constant ratio
(unless NP = P).

Advanced Algorithms (If)



LP RELAXATION
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LP RELAXATION

We introduce a variable z; for each label j € [L]. Let Ps; be the
collection of paths between s and t.

Advanced Algorithms (Il)



LP RELAXATION

We introduce a variable z; for each label j € [L]. Let Ps; be the
collection of paths between s and t.

L
min Z zj
=1
subject to Z Zrop 21, VPe Py

eeP

ze[0,1], Vje[L]
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LP RELAXATION

We introduce a variable z; for each label j € [L]. Let Ps; be the
collection of paths between s and t.

L

min Z Zj

=1
subject to Z Zrop 21, VPe Py

eeP

ze[0,1], Vje[L]

Q1: How to solve this LP efficiently?
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LP RELAXATION

We introduce a variable z; for each label j € [L]. Let Ps; be the
collection of paths between s and t.

L

min Z Zj

=1
subject to Z Zrop 21, VPe Py

eeP

ze[0,1], Vje[L]

Q1: How to solve this LP efficiently?
Q2: What is the integrality gap of this LP?
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LP RELAXATION

We introduce a variable z; for each label j € [L]. Let Ps; be the
collection of paths between s and t.

L

min Z Zj

=1
subject to Z Zrop 21, VPe Py

eeP

ze[0,1], Vje[L]

Q1: How to solve this LP efficiently?
Q2: What is the integrality gap of this LP? Q(m).
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SEPARATION ORACLE

We can solve the LP in poly-time using ellipsoid method provided a
separation oracle:
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SEPARATION ORACLE

We can solve the LP in poly-time using ellipsoid method provided a
separation oracle:

Given a point, in PTIME either
> confirm it is a feasible solution; or

» find a violated constraint.
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SEPARATION ORACLE

We can solve the LP in poly-time using ellipsoid method provided a
separation oracle:

Given a point, in PTIME either
» confirm it is a feasible solution; or

» find a violated constraint.

Oracle here: shortest s-t path
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BEAT THE INTERALITY GAP

» Obtain a partial solution via rounding;
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BEAT THE INTERALITY GAP

» Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.
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» Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.
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BEAT THE INTERALITY GAP

» Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.

j
be a parameter.

Let {z*} " be an optimal solution of the LP. Let § > 0
je
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BEAT THE INTERALITY GAP

» Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.

j
be a parameter.

1. LetLlé{jeL : zjzﬂ}.

Let {z*} " be an optimal solution of the LP. Let § > 0
je
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BEAT THE INTERALITY GAP

> Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.

Let {Zj} 0 be an optimal solution of the LP. Let § > 0
S

be a parameter.
1. Let Ly 2 {jeL : zjzﬂ}.

2. Let G’ be the graph obtained from G by removing
edges with label in L;.
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BEAT THE

INTERALITY GAP

> Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.

Let {

1.
2.

Z;k} be an optimal solution of the LP. Let § > 0
je

be a parameter.

Let L; = {jeL : z}fzﬁ}.
Let G’ be the graph obtained from G by removing
edges with label in L;.

Let Fbe the minimum s-t cut of G’, Ly be the labels
of edges in F.
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BEAT THE INTERALITY GAP

> Obtain a partial solution via rounding;

> Complement the solution by combinatorial construction.

Let {

1.
2.

Z;k} be an optimal solution of the LP. Let § > 0
je

be a parameter.

Let L; = {jeL : z}‘ Zﬁ}.

Let G’ be the graph obtained from G by removing
edges with label in L;.

Let Fbe the minimum s-t cut of G’, Ly be the labels
of edges in F.

Return L1 U Ls.
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BOUNDING L] AND L9

It is clear that

1 1
L] < ) =z == -OPT(LP) <
! Z[]ﬁ 7 (LP)
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BOUNDING L] AND L9

It is clear that

|L1] < Z

jell]

. OPT(LP) < = - OPT.

1
p

|~
.
|+

On the otherhand, there cannot be too many edge disjoint paths
between s and tin G:
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BOUNDING L{ AND L9

It is clear that

|L1] < Z

_[G[L

PT(LP) < = - OPT.

ml*—‘
ml*—‘

On the otherhand, there cannot be too many edge disjoint paths
between s and tin G:

> at least + edges on each s-t path;

> at most % = B(m—|L1]) such paths;

> therefore |Lo| < |F] < B(m—|L1]) (Menger’s theorem).
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THE CHOICE OF f

We already have

1 1
[Ly| 4 |L2| < E-OPT—i—ﬁ(m— ILi]) < E-OPT—i—ﬁm.

Setting f = ,/0—? yields an O (m%) approximation.
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THE CHOICE OF f§

We already have

1 1
|Ly| + |Lo] < E-OPT-i—ﬁ(m— ILy]) < E-OPT—i—ﬁm.

Setting f = ,IO—II;T yields an O(m%> approximation.

Remark

Instead of using Menger’s theorem, we can find a small cut by BFS
from s.
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THE CHOICE OF f§

We already have

1 1
|Ly| + |Lo] < E-OPT-i—ﬁ(m— ILy]) < E-OPT—i—ﬁm.

Setting f = ,IO—II;T yields an O(m%> approximation.

Remark

Instead of using Menger’s theorem, we can find a small cut by BFS
from s.

Exercise. Find an O(n%)—approx algorithm via rounding + BFS.
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