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Advanced Algorithms

In the course, we will learn Approximation Algorithms

▶ linear programming, semi-definite programming
▶ spectral method
▶ random walks
▶ …

We will emphasize on
▶ tools for designing approximation algorithms
▶ rigorous analysis of algorithms

Advanced Algorithms (I) 2/14



Advanced Algorithms

In the course, we will learn Approximation Algorithms

▶ linear programming, semi-definite programming
▶ spectral method
▶ random walks
▶ …

We will emphasize on
▶ tools for designing approximation algorithms
▶ rigorous analysis of algorithms

Advanced Algorithms (I) 2/14



Advanced Algorithms

In the course, we will learn Approximation Algorithms

▶ linear programming, semi-definite programming
▶ spectral method
▶ random walks
▶ …

We will emphasize on
▶ tools for designing approximation algorithms
▶ rigorous analysis of algorithms

Advanced Algorithms (I) 2/14



Advanced Algorithms

In the course, we will learn Approximation Algorithms

▶ linear programming, semi-definite programming
▶ spectral method
▶ random walks
▶ …

We will emphasize on
▶ tools for designing approximation algorithms
▶ rigorous analysis of algorithms

Advanced Algorithms (I) 2/14



Course Info

▶ Instructor: Chihao Zhang
▶ Course Homepage:

http://chihaozhang.com/teaching/AA2019spring/
▶ Office Hour: every Monday, 7:00pm - 9:00pm

Grading Policy
▶ Homework 30%
▶ Mid-term Exam 30%
▶ Course Project 40%
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MaxSAT

Given a CNF formula φ, is it satisfiable?

φ = (x1 ∨ x3 ∨ x̄29) ∧ (x̄3 ∨ x7) ∧ · · · ∧ (x̄33 ∨ x̄34 ∨ x90 ∨ x126)

NP-hard, we look at its optimization version.

MaxSAT
Input: A CNF formula φ = C1 ∧ C2 · · · ∧ Cm.

Problem: Compute an assignment that satisfies maximum
number of clauses.

Harder than SAT, so we look for an approximate solution.
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Tossing a Coin

An instance φ
▶ The variable sets V = {x1, x2, . . . , xn}
▶ The set of clauses C = {C1,C2, . . . ,Cm}
▶ Each clause Ci contains ℓi literals

We first cosnider the following simple algorithm:

▶ For each variable xi, toss an independent fair coin.
▶ If the coin goes HEAD, we set xi true, otherwise we

set xi false.
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Analysis

The outcome of the algorithm is random, we are interested in its
expectation.

For this particular algorithm, it can be derandomized.

E [X] =
m∑
i=1

Pr [Ci is satisfied] =
m∑
i=1

(
1 − 2−ℓi

)
≥ m

2
.

On the otherhand,
OPT ≤ m.

Therefore,

E [X] ≥ 1

2
· OPT.
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Can we improve the previous algorithm?

Observations
▶ the worst case happens when for some singleton clause, i.e.,
ℓi = 1;

▶ for a singleton C = x, if there is no C′ = x̄, then we can
increase the probability of x to be true;

▶ otherwise, we can improve the upper bound for OPT! (x and x̄
cannot be both satisfied)
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Tossing a Biased Coin

Let the p-biased coin be with probability p to HEAD, 1 − p to TAIL.

▶ For each variable xi, toss an independent p-biased
coin.

▶ If the coin goes HEAD, we set xi true, otherwise we
set xi false.
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Analysis

Assumption for Clauses of φ
▶ More positive singletons than negative singletons.
▶ There are t pairs of x and x̄.
▶ p ≥ 1

2 .

E [X] ≥ t+ (m − 2t)min
{
p, 1 − p2

}
.

The new upper bound for OPT:

OPT ≤ m − t

Combine them and obtain

E [X] ≥ α · OPT

where α ≈ 0.618.
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Can we further improve the algorithm?

We can use different coins for each variable, e.g., in

φ = x1 ∧ (x1 ∨ x̄2),

we prefer to set x1 to true.

How can we make use of the information?

Linear Programming helps.
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Tossing Clever Coins

We introduce the following variables.

▶ for every i ∈ [n], yi indicates whether xi is true;
▶ for every j ∈ [m], zj indicates whether Cj is satisfied.

max
m∑
j=1

zj

subject to
∑
i∈Pj

yi +
∑
k∈Nj

(1 − yk) ≥ zj, ∀j ∈ [m] s.t. Cj =
∨
i∈Pj

xi ∨
∨
k∈Nj

x̄k

zj ∈ {0, 1}, ∀j ∈ [m]

yi ∈ {0, 1}, ∀i ∈ [n]

This integer program is equivalent to MaxSAT.
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Relaxation

There is no efficient algorithm for integer programming in general

Therefore, we relax its non-linear constriants

max
m∑
j=1

zj

subject to
∑
i∈Pj

yi +
∑
k∈Pj

(1 − yk) ≥ zj, ∀j ∈ [m] s.t. Cj =
∨
i∈Pj

xi ∨
∨
k∈Nj

x̄k

0 ≤ zj ≤ 1, ∀j ∈ [m]

0 ≤ yi ≤ 1, ∀i ∈ [n]

We can solve this LP in poly-time
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Algorithm

Let
({
y∗i
}
i∈[n] ,

{
z∗j

}
j∈[m]

)
be an optimal solution of the LP.

▶ For each variable xi, toss an independent y∗i -biased
coin.

▶ If the coin goes HEAD, we set xi true, otherwise we
set xi false.
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Analysis

A typical upper bound of OPT for LP based algorithms is

OPT ≤ OPT(LP) =
m∑
j=1

z∗j

We can further establish

E [X] ≥
(
1 − 1

e

) m∑
j=1

z∗j .

Therefore, the LP rounding is a
(
1 − 1

e

)
-approximation algorithm for

MaxSAT
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