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ADVANCED ALGORITHMS

In the course, we will learn Approximation Algorithms
» linear programming, semi-definite programming
spectral method

| 4
» random walks
>

We will emphasize on
> tools for designing approximation algorithms

» rigorous analysis of algorithms

Advanced Algorithms (1) 214



CoOURSE INFO

Advanced Algorithms (1) 314


http://chihaozhang.com/teaching/AA2019spring/

CouRrsE INFO

» Instructor: Chihao Zhang

> Course Homepage:
http://chihaozhang.com/teaching/AA2019spring/

> Office Hour: every Monday, 7:00pm - 9:00pm
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CouRrsE INFO

» Instructor: Chihao Zhang

> Course Homepage:
http://chihaozhang.com/teaching/AA2019spring/

> Office Hour: every Monday, 7:00pm - 9:00pm
Grading Policy

» Homework 30%

> Mid-term Exam 30%

> Course Project 40%
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NP-hard, we look at its optimization version.
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MaxSAT

Given a CNF formula ¢, is it satisfiable?
¢ = (X1VX3V)_(29)/\()_(3VX7)/\-"/\()_(33V)_(34VX90VX126)

NP-hard, we look at its optimization version.

MAXSAT
Input: A CNF formula¢ = C1 A Co -+ A Cp,.
Problem: Compute an assignment that satisfies maximum
number of clauses.
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MaxSAT

Given a CNF formula ¢, is it satisfiable?

¢=(X1VX3V)_(29)/\()_(3VX7)/\'-'/\()_(33V)_(34VX90VX126)

NP-hard, we look at its optimization version.

MAXSAT
Input: A CNF formula¢ = C1 A Co -+ A Cp,.

Problem: Compute an assignment that satisfies maximum
number of clauses.

Harder than SAT, so we look for an approximate solution.
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TossiING A COIN

An instance ¢
> The variable sets V= {x1, xo, ..., Xy}
> The set of clauses C = {C1, Cs,...,Cp}

» Each clause C; contains ¢; literals
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We first cosnider the following simple algorithm:
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> The set of clauses C = {C1, Cs,...,Cp}

» Each clause C; contains ¢; literals

We first cosnider the following simple algorithm:

» For each variable x;, toss an independent fair coin.
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TossiING A COIN

An instance ¢
> The variable sets V= {x1, xo, ..., Xy}
> The set of clauses C = {C1, Cs,...,Cp}

» Each clause C; contains ¢; literals

We first cosnider the following simple algorithm:

» For each variable x;, toss an independent fair coin.

> If the coin goes HEAD, we set x; true, otherwise we
set x; false.
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ANALYSIS

The outcome of the algorithm is random, we are interested in its
expectation.
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ANALYSIS

The outcome of the algorithm is random, we are interested in its
expectation.

For this particular algorithm, it can be derandomized.

E[X = Z Pr [C; is satisfied]
=1

=
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ANALYSIS

The outcome of the algorithm is random, we are interested in its
expectation.

For this particular algorithm, it can be derandomized.

E[X = ’Zm;Pr [C; is satisfied] = zm; (1 - 2“"') > g
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ANALYSIS

The outcome of the algorithm is random, we are interested in its
expectation.

For this particular algorithm, it can be derandomized.

m

Z Pr [C; is satisfied] = Z (1 - )

i=1

MIS

On the otherhand,
OPT < m.
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ANALYSIS

The outcome of the algorithm is random, we are interested in its
expectation.

For this particular algorithm, it can be derandomized.

m

Z Pr [C; is satisfied] = Z (1 — )

On the otherhand,

MIS

[y

Therefore,
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Can we improve the previous algorithm?
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Observations

> the worst case happens when for some singleton clause, i.e.,
ti=1
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Can we improve the previous algorithm?

Observations
> the worst case happens when for some singleton clause, i.e.,
¢ =1
> for a singleton C = X, if there is no C’ = X, then we can
increase the probability of x to be true;
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Can we improve the previous algorithm?

Observations
> the worst case happens when for some singleton clause, i.e.,
¢ =1
> for a singleton C = X, if there is no C’ = X, then we can
increase the probability of x to be true;

> otherwise, we can improve the upper bound for OPT! (x and X
cannot be both satisfied)
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TossING A Biasep CoIN

Let the p-biased coin be with probability p to HEAD, 1 — p to TAIL.
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Let the p-biased coin be with probability p to HEAD, 1 — p to TAIL.

> For each variable x;, toss an independent p-biased
coin.
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TossING A Biasep CoIN

Let the p-biased coin be with probability p to HEAD, 1 — p to TAIL.

> For each variable x;, toss an independent p-biased
coin.

> If the coin goes HEAD, we set x; true, otherwise we
set x; false.

Advanced Algorithms (1)



ANALYSIS

Advanced Algorithms (1) 914



ANALYSIS

Assumption for Clauses of ¢

> More positive singletons than negative singletons.
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Assumption for Clauses of ¢
> More positive singletons than negative singletons.

» There are ¢ pairs of x and x.
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ANALYSIS

Assumption for Clauses of ¢

> More positive singletons than negative singletons.

» There are ¢ pairs of x and x.

1
’pZQ.

E[X > t+ (m-2f)min{p,1 - p*}.
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ANALYSIS

Assumption for Clauses of ¢
> More positive singletons than negative singletons.
» There are ¢ pairs of x and x.
> p= %

E[X > t+ (m-2f)min{p,1 - p*}.
The new upper bound for OPT:

OPT<m-t
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ANALYSIS

Assumption for Clauses of ¢
> More positive singletons than negative singletons.
» There are ¢ pairs of x and x.
> p= %

E[X > t+ (m-2f)min{p,1 - p*}.
The new upper bound for OPT:

OPT<m-t
Combine them and obtain
E[X] > « - OPT

where o ~ 0.618.
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Can we further improve the algorithm?

We can use different coins for each variable, e.g., in
¢ =x1 A (Xl V)_(Q),

we prefer to set x; to true.
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We can use different coins for each variable, e.g., in
¢ =x1 A\ (Xl V)?g),

we prefer to set x; to true.

How can we make use of the information?
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Can we further improve the algorithm?

We can use different coins for each variable, e.g., in

¢ =x1 A (Xl V)?Q),

we prefer to set x; to true.
How can we make use of the information?

Linear Programming helps.
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TossiING CLEVER COINS

We introduce the following variables.
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TossiING CLEVER COINS

We introduce the following variables.

> for every i € [n], y; indicates whether x; is true;

> for every j € [m], zj indicates whether C; is satisfied.

Advanced Algorithms (1)

114



TossiING CLEVER COINS
We introduce the following variables.

> for every i € [n], y; indicates whether x; is true;

> for every j € [m], zj indicates whether C; is satisfied.

max

INgE
'\N

T
)

subject to yi+ Z(l -y =z, Vje[m|st. Cj= \/xi v \/ Xk

i€ keN; i€eP; keN;
z e {01}, Vje[m
yie (0.1}, Vie|n|

o
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TossiING CLEVER COINS

We introduce the following variables.

> for every i € [n], y; indicates whether x; is true;

> for every j € [m], zj indicates whether C; is satisfied.

max

subject to

INgE
'\N

T
)

YI+Z(1—yk) >z, Vje[m]st. Cj:\/x,v \/}k

i€ keN; i€eP; keN;

2 e {01}, Yje[m|
yie 0.1}, Yieln]

o

This integer program is equivalent to MAXSAT.
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RELAXATION

There is no efficient algorithm for integer programming in general
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RELAXATION

There is no efficient algorithm for integer programming in general

Therefore, we relax its non-linear constriants

m

max Z z;
=1
subject to Zy,- + Z(l —yk) =2z, Vje[m|st. Cj= \/xi % \/ Xk
i€p; keP; i€pP; keN;

0<z <1, Vje[m|
0<yi <1, Vie|n]
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RELAXATION

There is no efficient algorithm for integer programming in general

Therefore, we relax its non-linear constriants

m

max Z z;
=1
subject to Zy,- + Z(l —yk) =2z, Vje[m|st. Cj= \/xi % \/ Xk
i€p; keP; i€pP; keN;

0<z <1, Vje[m|
0<yi <1, Vie|n]

We can solve this LP in poly-time
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ALGORITHM

Let ({yj.‘}ie[n] , {z}‘}je[m]) be an optimal solution of the LP.
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ALGORITHM

Let ({y,.}’.e[n] , {zj }je[ ]) be an optimal solution of the LP.

m
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ALGORITHM

Let ({yi}ie[n] , {zj }je[m]) be an optimal solution of the LP.

> For each variable x;, toss an independent y:-biased
coin.
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ALGORITHM

Let ({yl. }ie[n] , {zj }je[m]) be an optimal solution of the LP.

> For each variable x;, toss an independent y:-biased
coin.

> If the coin goes HEAD, we set x; true, otherwise we
set x; false.
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ANALYSIS

A typical upper bound of OPT for LP based algorithms is

m
OPT < OPT(LP) = > 7

=1
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ANALYSIS

A typical upper bound of OPT for LP based algorithms is
m
OPT < OPT(LP) = > 7
j=1
We can further establish

E[X]Z(l—%)zm:z;‘.

J=1
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ANALYSIS

A typical upper bound of OPT for LP based algorithms is
m
OPT < OPT(LP) = > 7
j=1
We can further establish
I\ v ,
j=1

Therefore, the LP rounding is a (1 — %)—approximation algorithm for
MAXSAT
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