
ADVANCED ALGORITHMS (IX)

CHIHAO ZHANG

Today we begin to introduce Markov chains, a powerful and widely used tool in the design of algorithms. Some
of you might have met them in the probability class. In this course, I will develop the theory mainly based on the
spectral methods we learnt before.

1. Basic Concepts

I assume that you know what a Markov chain is. We use Ω to denote the state space and in most cases today, Ω is
simply [n]. We only consider the case that Ω is finite and the chain is time-homogeneous, which means the transition
matrix is the same at each step. We let P ∈ Rn×n be the transition matrix, namely P(i, j) is the probability that one
moves from state i to state j. The matrix P is a stochastic matrix in the sense that each entry of P is non-negative,
and the sum of entries in each row of P is one. Sometimes we just use P to denote the chain. For every t ≥ 1, you
can verify that P t is the transition matrix of the chain in t-steps, namely P t (i, j) is the probability that one moves
from state i to state j in t steps. Sometimes, it is convenient to talk about the transition graph GP = (Ω, EP ) where
an edge (i, j) ∈ EP iff P(i, j) > 0. Moreover, an edge (i, j) is associated with a weight P(i, j).

A distribution π on Ω is called a stationary distribution if πT P = πT holds. Note that for any stochastic matrix P ,
a stationary distribution always exists (this is a consequence of the Brouwer Fixed Point Theorem).

In this section, we use a two-state Markov chain as an example to introduce some important concepts. Let the

transition matrix be P =

[
p 1 − p

1 − q q

]
where p,q ∈ [0, 1] are two reals.

It is not hard to verify that π =
(

q
p+q ,

p
p+q

)T
is a stationary distribution of P . We are interested in the following

question: Does µT P t converge to πT when t → ∞ for any distribution µ?
At least for our two-state chain P , the question is not hard to answer. Assumewe start from any initial distribution

µ and let µi = µT P i be the distribution after i steps. Define ∆i ≜
��µi (0) − π(0)

�� as the distance between µi and π .
Then µi converges to π if and only if ∆i converges to zero. We can directly compute

∆i+1 =

����µi+1(0) −
q

p + q

���� = ����µi (0) · (1 − p) + (1 − µi (0)) · q − q

p + q

���� = |1 − p − q | ·∆i .

Therefore, unless µ = π , limt→∞ ∆t = 0 if and only if |1 − p − q | , 1.
In fact, there are two cases that can make |1 − p − q | = 1 happen: p = q = 1 or p = q = 0. These two cases

prevent the chain from converging for different reasons.
(1) When p = q = 0, the chain is called reducible, which means the state space is disconnected. If we start at

state 0 in the beginning, then we will always stay there (and the same holds for state 1).
(2) When p = q = 1, the chain is called periodic. In our example, we will alternate between state 0 and state 1.

We now formally define (the opposite of) these two concepts. We call a Markov chain irreducible, if for every
x ,y ∈ Ω, P t (x ,y) > 0 for some t . For every x ∈ Ω, let C(x) =

{
t ≥ 1 : P t (x ,x) > 0

}
. Then we call a Markov chain

aperiodic if for every x ∈ Ω, gcd C(x) = 1.
We remark that for an irreducible chain, when the transition matrix P satisfies P(x ,y) > 0 ⇐⇒ P(y,x) > 0, the

aperiodic condition is equivalent to that the transition graph GP is not bipartite.
The following proposition describes an important property of chains that are both irreducible and aperiodic. The

proof is not hard and I leave it as an exercise.

Proposition 1. If P is the transition matrix of an irreducible and aperiodic chain, then there exists some t ≥ 1 such
that P t (x ,y) > 0 holds for every x ,y ∈ Ω.

In our two-state example, we know that both irreducibility and aperiodicity are necessary for the chain to con-
verge to stationary distribution. We now prove that they are also sufficient.
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Theorem 2. If a finite time-homogeneous chain P is irreducible and aperiodic, then it has a unique stationary distribu-
tion π . Moreover, for any initial distribution µ, it holds that

lim
t→∞

µT P t = πT .

Theorem 2 can be proved in many ways. In fact, I will introduce three proofs in this course. The proofs are based
on different tools that can be used to analyze Markov chains. We will also see some further development of these
tools.

Today we prove theorem 2 by decomposing P into the sum a good matrix and a bad one. We then show that the
bad one vanishes during the iteration.

Proof of Theorem 2. We assume the state space of the chain P is [n] and π be an arbitrary stationary distribution

of P , whose existence can be guaranteed by the Brouwer fixed point theorem. Let Π =


πT

...
πT

 be the n × n matrix

whose rows are πT . Then µTΠ = πT holds for any distribution µ. The matrix Π is our good matrix. It follows from
proposition 1 that for some t ≥ 1, each entry of the matrix P t is positive. Therefore, we can find some constant
δ > 0 such that each entry of P t − δΠ is non-negative. Let Q = P t−δΠ

1−δ (equivalently P t = δΠ + (1 − δ)Q), then Q
is stochastic.

We now show by induction that P tk = (1 − θk )Π + θkQk , where θ = 1 − δ . The base case k = 1 is just our
definition of Q . Assuming it is true for smaller k , then

P t(k+1) = P tkP t =
(
(1 − θk )Π + θkQk

)
P t = (1 − θk )Π + θkQk ((1 − θ)Π + θQ) = (1 − θk+1)Π + θk+1Qk+1,

where in the third equality, we used the fact that ΠP = Π and in the last equality, we used the fact that QΠ = Π.
Therefore, for every 0 ≤ j < t , we have

P tk+j = (1 − θk )Π + θkQkP j .

The above tends to Π when k → ∞ since 0 < θ < 1. □

2. Spectral Method

Consider a transition matrix P . We would like to apply spectral methods developed in previous lectures to analyze
P . However, the spectral decomposition theorem requires the matrix to be symmetric in order to guarantee its
eigenvalues to be real. This is not true in general for P , but we can still apply these tools for at least a large family
of Markov chains.

Let π ∈ RΩ be a distribution over the space and P ∈ RΩ×Ω be a stochastic matrix. If the following detailed balance
condition

(1) π(x)P(x ,y) = π(y)P(y,x),

holds for every x ,y ∈ Ω, then π is a stationary distribution of P . To see this, we note that

πT P(x) =
∑
y∈Ω

π(y)P(y,x) =
∑
y∈Ω

π(x)P(x ,y) = π(x).

It is worth to note that the detailed balance condition is only a sufficient condition for π to be a stationary distribu-
tion, but not a necessary one. We call those Markov chains whose stationary distribution satisfies eq. (1) the (time)
reversible chains. The condition 1 implies that the transition matrix of a reversible chain is symmetric in the following
sense:

Let π be the stationary distribution of a reversible Markov chain P on the space [n]. We define an inner product
⟨·, ·⟩π such that for every x ,y ∈ R[n],

⟨x ,y⟩π ≜
n∑

i=1

π(i)x(i)y(i).

If we let Dπ = diag(π(1), . . . ,π(n)) be the diagonal matrix whose i-th entry on the diagonal is π(i), then the
above inner product can be written as ⟨x ,y⟩π = yTDπx . In other words, we are working on a Hilbert space Rn
endowed with the inner product ⟨·, ·⟩π , and P is considered to be symmetric here. We have the following spectral
decomposition theorem:
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Theorem 3. Let P ∈ Rn×n be reversible with respect to π , then the Hilbert space (Rn , ⟨·, ·⟩π ) has an orthonormal basis
{vi }i ∈[n] corresponding to real eigenvalues {λi }i ∈[n].

Proof. We prove the theorem by reducing it to the spectral decomposition theoremwith respect to the ordinary inner
product ⟨·, ·⟩ (See notes of Lecture 5). Since P is reversible with respect to π , if we define a matrix Q ≜ D

1
2
π PD

− 1
2

π ,
then Q is symmetric. To see this, we have

Q(x ,y) = π(x)
1
2 P(x ,y)π(y)−

1
2 = π(x)−

1
2 π(x)P(x ,y)π(y)−

1
2 = π(x)−

1
2 π(y)P(y,x)π(y)−

1
2 = Q(y,x).

Then we can apply spectral decomposition theorem onQ , and let {wi }i ∈[n] and {µi }i ∈[n] be corresponding orthonor-
mal eigenvectors and eigenvalues. We have

Q = D
1
2
π PD

− 1
2

π =
n∑

i=1

µiwiw
T
i .

The above implies

P =
n∑

i=1

µiD
− 1

2
π wiw

T
i D

1
2
π .

For every i ∈ [n], we let vi = D
− 1

2
π wi and λi = µi . We can verify that

⟨vi ,vj ⟩π = vTj Dπvi = w jD
− 1

2
π DπD

− 1
2

π wi = ⟨wi ,w j ⟩,
and therefore {vi }i ∈[n] is an orthonormal basis with respect to ⟨·, ·⟩π . Moreover, it holds that

P =
n∑

i=1

λiviv
T
i Dπ ,

and this implies that λi is the eigenvalue of vi for every i ∈ [n]. □

Consider the random walk on a d-regular graphG with adjacency matrixA. The transition matrix of this Markov
chain is exactly A

d . In general, the transition matrix P can be viewed as a weighted adjacency matrix of the transition
graph GP . So the following properties of P is quite similar to those of normalized Laplacians that we are familiar
with:

Proposition 4. Let P be the transition matrix of a reversible Markov chain on [n] with stationary distribution π . Let
λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues. Then

(1) λn = 1;
(2) λ1 ≥ −1 and λ1 = −1 if and only if one of components of GP is bipartite;
(3) λn−1 = 1 if and only if P is reducible.

You can compare the statement of above proposition with Proposition 6 of Lecture 5. We leave the proof of this
proposition as an exercise. It is easy to see that we can take vn = 1 since P is stochastic.

It is instructive to compute P t using the spectral decomposition, which gives

P t =

(
n∑

i=1

λiviv
T
i Dπ

)t
=

n∑
i=1

λtiviv
T
i Dπ .

Therefore, it follows from proposition 4 and vn = 1 that when P is irreducible (λn−1 < 1) and aperiodic (λ1 > −1),
we have limt→∞ P t = 11TDπ = Π. This again justifies theorem 2 for reversible chains.

3. Remark

More details on Markov chains can be found in the monograph [LP17].
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